Abstract
In this review, the value of functional imaging for providing insight into the role of the basal ganglia in motor control is reviewed. Brain activation findings in normal subjects and Parkinson's disease patients are examined and evidence supporting the existence for functionally independent distributed basal ganglia-frontal loops is presented. It is argued that the basal ganglia probably act to focus and filter cortical output, optimising the running of motor programs.
Keywords: Motor control, Parkinson's disease, positron emission tomography
Full Text
The Full Text of this article is available as a PDF (514.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander G. E., Crutcher M. D., DeLong M. R. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. Prog Brain Res. 1990;85:119–146. [PubMed] [Google Scholar]
- Alexander G. E., Crutcher M. D. Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey. J Neurophysiol. 1990 Jul;64(1):164–178. doi: 10.1152/jn.1990.64.1.164. [DOI] [PubMed] [Google Scholar]
- Alexander G. E., DeLong M. R. Microstimulation of the primate neostriatum. I. Physiological properties of striatal microexcitable zones. J Neurophysiol. 1985 Jun;53(6):1401–1416. doi: 10.1152/jn.1985.53.6.1401. [DOI] [PubMed] [Google Scholar]
- Anderson M. E., Horak F. B. Influence of the globus pallidus on arm movements in monkeys. III. Timing of movement-related information. J Neurophysiol. 1985 Aug;54(2):433–448. doi: 10.1152/jn.1985.54.2.433. [DOI] [PubMed] [Google Scholar]
- Baker S. C., Rogers R. D., Owen A. M., Frith C. D., Dolan R. J., Frackowiak R. S., Robbins T. W. Neural systems engaged by planning: a PET study of the Tower of London task. Neuropsychologia. 1996 Jun;34(6):515–526. doi: 10.1016/0028-3932(95)00133-6. [DOI] [PubMed] [Google Scholar]
- Boecker H., Dagher A., Ceballos-Baumann A. O., Passingham R. E., Samuel M., Friston K. J., Poline J., Dettmers C., Conrad B., Brooks D. J. Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET. J Neurophysiol. 1998 Feb;79(2):1070–1080. doi: 10.1152/jn.1998.79.2.1070. [DOI] [PubMed] [Google Scholar]
- Brotchie P., Iansek R., Horne M. K. Motor function of the monkey globus pallidus. 2. Cognitive aspects of movement and phasic neuronal activity. Brain. 1991 Aug;114(Pt 4):1685–1702. doi: 10.1093/brain/114.4.1685. [DOI] [PubMed] [Google Scholar]
- Brown R. G., Marsden C. D. Cognitive function in Parkinson's disease: from description to theory. Trends Neurosci. 1990 Jan;13(1):21–29. doi: 10.1016/0166-2236(90)90058-i. [DOI] [PubMed] [Google Scholar]
- Catalan M. J., Ishii K., Honda M., Samii A., Hallett M. A PET study of sequential finger movements of varying length in patients with Parkinson's disease. Brain. 1999 Mar;122(Pt 3):483–495. doi: 10.1093/brain/122.3.483. [DOI] [PubMed] [Google Scholar]
- Ceballos-Baumann A. O., Obeso J. A., Vitek J. L., Delong M. R., Bakay R., Linazasoro G., Brooks D. J. Restoration of thalamocortical activity after posteroventral pallidotomy in Parkinson's disease. Lancet. 1994 Sep 17;344(8925):814–814. doi: 10.1016/s0140-6736(94)92369-8. [DOI] [PubMed] [Google Scholar]
- Connolly C. I., Burns J. B. A model for the functioning of the striatum. Biol Cybern. 1993;68(6):535–544. doi: 10.1007/BF00200813. [DOI] [PubMed] [Google Scholar]
- Connolly C. I., Burns J. B. A new striatal model and its relationship to basal ganglia diseases. Neurosci Res. 1993 May;16(4):271–274. doi: 10.1016/0168-0102(93)90037-q. [DOI] [PubMed] [Google Scholar]
- Davis K. D., Taub E., Houle S., Lang A. E., Dostrovsky J. O., Tasker R. R., Lozano A. M. Globus pallidus stimulation activates the cortical motor system during alleviation of parkinsonian symptoms. Nat Med. 1997 Jun;3(6):671–674. doi: 10.1038/nm0697-671. [DOI] [PubMed] [Google Scholar]
- Dettmers C., Fink G. R., Lemon R. N., Stephan K. M., Passingham R. E., Silbersweig D., Holmes A., Ridding M. C., Brooks D. J., Frackowiak R. S. Relation between cerebral activity and force in the motor areas of the human brain. J Neurophysiol. 1995 Aug;74(2):802–815. doi: 10.1152/jn.1995.74.2.802. [DOI] [PubMed] [Google Scholar]
- Frith C. D., Friston K., Liddle P. F., Frackowiak R. S. Willed action and the prefrontal cortex in man: a study with PET. Proc Biol Sci. 1991 Jun 22;244(1311):241–246. doi: 10.1098/rspb.1991.0077. [DOI] [PubMed] [Google Scholar]
- Gotham A. M., Brown R. G., Marsden C. D. 'Frontal' cognitive function in patients with Parkinson's disease 'on' and 'off' levodopa. Brain. 1988 Apr;111(Pt 2):299–321. doi: 10.1093/brain/111.2.299. [DOI] [PubMed] [Google Scholar]
- Grafton S. T., Waters C., Sutton J., Lew M. F., Couldwell W. Pallidotomy increases activity of motor association cortex in Parkinson's disease: a positron emission tomographic study. Ann Neurol. 1995 Jun;37(6):776–783. doi: 10.1002/ana.410370611. [DOI] [PubMed] [Google Scholar]
- Hallett M., Khoshbin S. A physiological mechanism of bradykinesia. Brain. 1980 Jun;103(2):301–314. doi: 10.1093/brain/103.2.301. [DOI] [PubMed] [Google Scholar]
- Jahanshahi M., Jenkins I. H., Brown R. G., Marsden C. D., Passingham R. E., Brooks D. J. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Brain. 1995 Aug;118(Pt 4):913–933. doi: 10.1093/brain/118.4.913. [DOI] [PubMed] [Google Scholar]
- Jenkins I. H., Fernandez W., Playford E. D., Lees A. J., Frackowiak R. S., Passingham R. E., Brooks D. J. Impaired activation of the supplementary motor area in Parkinson's disease is reversed when akinesia is treated with apomorphine. Ann Neurol. 1992 Dec;32(6):749–757. doi: 10.1002/ana.410320608. [DOI] [PubMed] [Google Scholar]
- Jenkins I. H., Passingham R. E., Brooks D. J. The effect of movement frequency on cerebral activation: a positron emission tomography study. J Neurol Sci. 1997 Oct 22;151(2):195–205. doi: 10.1016/s0022-510x(97)00145-7. [DOI] [PubMed] [Google Scholar]
- Jueptner M., Frith C. D., Brooks D. J., Frackowiak R. S., Passingham R. E. Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J Neurophysiol. 1997 Mar;77(3):1325–1337. doi: 10.1152/jn.1997.77.3.1325. [DOI] [PubMed] [Google Scholar]
- Jueptner M., Jenkins I. H., Brooks D. J., Frackowiak R. S., Passingham R. E. The sensory guidance of movement: a comparison of the cerebellum and basal ganglia. Exp Brain Res. 1996 Dec;112(3):462–474. doi: 10.1007/BF00227952. [DOI] [PubMed] [Google Scholar]
- Kimura M. Behaviorally contingent property of movement-related activity of the primate putamen. J Neurophysiol. 1990 Jun;63(6):1277–1296. doi: 10.1152/jn.1990.63.6.1277. [DOI] [PubMed] [Google Scholar]
- Limousin P., Greene J., Pollak P., Rothwell J., Benabid A. L., Frackowiak R. Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson's disease. Ann Neurol. 1997 Sep;42(3):283–291. doi: 10.1002/ana.410420303. [DOI] [PubMed] [Google Scholar]
- Ljungberg T., Apicella P., Schultz W. Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol. 1992 Jan;67(1):145–163. doi: 10.1152/jn.1992.67.1.145. [DOI] [PubMed] [Google Scholar]
- Marsden C. D. What do the basal ganglia tell premotor cortical areas? Ciba Found Symp. 1987;132:282–300. doi: 10.1002/9780470513545.ch17. [DOI] [PubMed] [Google Scholar]
- Middleton F. A., Strick P. L. New concepts about the organization of basal ganglia output. Adv Neurol. 1997;74:57–68. [PubMed] [Google Scholar]
- Mink J. W., Thach W. T. Basal ganglia motor control. III. Pallidal ablation: normal reaction time, muscle cocontraction, and slow movement. J Neurophysiol. 1991 Feb;65(2):330–351. doi: 10.1152/jn.1991.65.2.330. [DOI] [PubMed] [Google Scholar]
- Morris R. G., Downes J. J., Sahakian B. J., Evenden J. L., Heald A., Robbins T. W. Planning and spatial working memory in Parkinson's disease. J Neurol Neurosurg Psychiatry. 1988 Jun;51(6):757–766. doi: 10.1136/jnnp.51.6.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owen A. M., Doyon J., Dagher A., Sadikot A., Evans A. C. Abnormal basal ganglia outflow in Parkinson's disease identified with PET. Implications for higher cortical functions. Brain. 1998 May;121(Pt 5):949–965. doi: 10.1093/brain/121.5.949. [DOI] [PubMed] [Google Scholar]
- Owen A. M., Doyon J., Petrides M., Evans A. C. Planning and spatial working memory: a positron emission tomography study in humans. Eur J Neurosci. 1996 Feb;8(2):353–364. doi: 10.1111/j.1460-9568.1996.tb01219.x. [DOI] [PubMed] [Google Scholar]
- Penney J. B., Jr, Young A. B. Speculations on the functional anatomy of basal ganglia disorders. Annu Rev Neurosci. 1983;6:73–94. doi: 10.1146/annurev.ne.06.030183.000445. [DOI] [PubMed] [Google Scholar]
- Penney J. B., Jr, Young A. B. Striatal inhomogeneities and basal ganglia function. Mov Disord. 1986;1(1):3–15. doi: 10.1002/mds.870010102. [DOI] [PubMed] [Google Scholar]
- Playford E. D., Jenkins I. H., Passingham R. E., Nutt J., Frackowiak R. S., Brooks D. J. Impaired mesial frontal and putamen activation in Parkinson's disease: a positron emission tomography study. Ann Neurol. 1992 Aug;32(2):151–161. doi: 10.1002/ana.410320206. [DOI] [PubMed] [Google Scholar]
- Rascol O., Sabatini U., Chollet F., Celsis P., Montastruc J. L., Marc-Vergnes J. P., Rascol A. Supplementary and primary sensory motor area activity in Parkinson's disease. Regional cerebral blood flow changes during finger movements and effects of apomorphine. Arch Neurol. 1992 Feb;49(2):144–148. doi: 10.1001/archneur.1992.00530260044017. [DOI] [PubMed] [Google Scholar]
- Rascol O., Sabatini U., Chollet F., Fabre N., Senard J. M., Montastruc J. L., Celsis P., Marc-Vergnes J. P., Rascol A. Normal activation of the supplementary motor area in patients with Parkinson's disease undergoing long-term treatment with levodopa. J Neurol Neurosurg Psychiatry. 1994 May;57(5):567–571. doi: 10.1136/jnnp.57.5.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robbins T. W., James M., Owen A. M., Lange K. W., Lees A. J., Leigh P. N., Marsden C. D., Quinn N. P., Summers B. A. Cognitive deficits in progressive supranuclear palsy, Parkinson's disease, and multiple system atrophy in tests sensitive to frontal lobe dysfunction. J Neurol Neurosurg Psychiatry. 1994 Jan;57(1):79–88. doi: 10.1136/jnnp.57.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Samuel M., Ceballos-Baumann A. O., Blin J., Uema T., Boecker H., Passingham R. E., Brooks D. J. Evidence for lateral premotor and parietal overactivity in Parkinson's disease during sequential and bimanual movements. A PET study. Brain. 1997 Jun;120(Pt 6):963–976. doi: 10.1093/brain/120.6.963. [DOI] [PubMed] [Google Scholar]
- Samuel M., Ceballos-Baumann A. O., Turjanski N., Boecker H., Gorospe A., Linazasoro G., Holmes A. P., DeLong M. R., Vitek J. L., Thomas D. G. Pallidotomy in Parkinson's disease increases supplementary motor area and prefrontal activation during performance of volitional movements an H2(15)O PET study. Brain. 1997 Aug;120(Pt 8):1301–1313. doi: 10.1093/brain/120.8.1301. [DOI] [PubMed] [Google Scholar]
- Schultz W., Apicella P., Ljungberg T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci. 1993 Mar;13(3):900–913. doi: 10.1523/JNEUROSCI.13-03-00900.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz W., Romo R. Neuronal activity in the monkey striatum during the initiation of movements. Exp Brain Res. 1988;71(2):431–436. doi: 10.1007/BF00247503. [DOI] [PubMed] [Google Scholar]
- Taylor A. E., Saint-Cyr J. A., Lang A. E. Frontal lobe dysfunction in Parkinson's disease. The cortical focus of neostriatal outflow. Brain. 1986 Oct;109(Pt 5):845–883. doi: 10.1093/brain/109.5.845. [DOI] [PubMed] [Google Scholar]
- Wichmann T., DeLong M. R. Oscillations in the basal ganglia. Nature. 1999 Aug 12;400(6745):621–622. doi: 10.1038/23148. [DOI] [PubMed] [Google Scholar]