Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2000 May;196(Pt 4):577–585. doi: 10.1046/j.1469-7580.2000.19640577.x

NMDA receptors in the basal ganglia

PAULA RAVENSCROFT 1, JONATHAN BROTCHIE 1,
PMCID: PMC1468098  PMID: 10923988

Abstract

The basal ganglia consist of several interconnected nuclei located in the telecephalon, diencephalon and mesencephalon that are involved in a variety of motor and non-motor behavioural functions. Glutamate receptors play a major role in neurotransmission within the basal ganglia and are present in all nuclei of the basal ganglia. This review focuses on the contribution of the NMDA class of glutamatergic receptors to various movement disorders whose primary pathology lies within the basal ganglia and discusses how pharmacological manipulation of such receptors may be therapeutically useful.

Keywords: Glutamate receptors, Parkinson's disease, Huntington's disease

Full Text

The Full Text of this article is available as a PDF (155.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afsharpour S. Light microscopic analysis of Golgi-impregnated rat subthalamic neurons. J Comp Neurol. 1985 Jun 1;236(1):1–13. doi: 10.1002/cne.902360102. [DOI] [PubMed] [Google Scholar]
  2. Albin R. L., Makowiec R. L., Hollingsworth Z. R., Dure L. S., 4th, Penney J. B., Young A. B. Excitatory amino acid binding sites in the basal ganglia of the rat: a quantitative autoradiographic study. Neuroscience. 1992;46(1):35–48. doi: 10.1016/0306-4522(92)90006-n. [DOI] [PubMed] [Google Scholar]
  3. Angulo J. A., Davis L. G., Burkhart B. A., Christoph G. R. Reduction of striatal dopaminergic neurotransmission elevates striatal proenkephalin mRNA. Eur J Pharmacol. 1986 Nov 4;130(3):341–343. doi: 10.1016/0014-2999(86)90290-6. [DOI] [PubMed] [Google Scholar]
  4. Angulo J. A., Watanabe Y., Cadet J., Ledoux M., McEwen B. S. Upregulation of forebrain proenkephalin mRNA subsequent to NMDA receptor blockade. Eur J Pharmacol. 1993 Feb 15;244(3):317–318. doi: 10.1016/0922-4106(93)90158-6. [DOI] [PubMed] [Google Scholar]
  5. Baldi G., Russi G., Nannini L., Vezzani A., Consolo S. Trans-synaptic modulation of striatal ACh release in vivo by the parafascicular thalamic nucleus. Eur J Neurosci. 1995 May 1;7(5):1117–1120. doi: 10.1111/j.1460-9568.1995.tb01100.x. [DOI] [PubMed] [Google Scholar]
  6. Beckstead R. M. A projection to the striatum from the medial subdivision of the posterior group of the thalamus in the cat. Brain Res. 1984 May 23;300(2):351–356. doi: 10.1016/0006-8993(84)90845-x. [DOI] [PubMed] [Google Scholar]
  7. Beckstead R. M. The thalamostriatal projection in the cat. J Comp Neurol. 1984 Mar 1;223(3):313–346. doi: 10.1002/cne.902230302. [DOI] [PubMed] [Google Scholar]
  8. Bevan M. D., Francis C. M., Bolam J. P. The glutamate-enriched cortical and thalamic input to neurons in the subthalamic nucleus of the rat: convergence with GABA-positive terminals. J Comp Neurol. 1995 Oct 23;361(3):491–511. doi: 10.1002/cne.903610312. [DOI] [PubMed] [Google Scholar]
  9. Bezard E., Stutzmann J. M., Imbert C., Boraud T., Boireau A., Gross C. E. Riluzole delayed appearance of parkinsonian motor abnormalities in a chronic MPTP monkey model. Eur J Pharmacol. 1998 Sep 4;356(2-3):101–104. doi: 10.1016/s0014-2999(98)00537-8. [DOI] [PubMed] [Google Scholar]
  10. Blanchet P. J., Konitsiotis S., Whittemore E. R., Zhou Z. L., Woodward R. M., Chase T. N. Differing effects of N-methyl-D-aspartate receptor subtype selective antagonists on dyskinesias in levodopa-treated 1-methyl-4-phenyl-tetrahydropyridine monkeys. J Pharmacol Exp Ther. 1999 Sep;290(3):1034–1040. [PubMed] [Google Scholar]
  11. Bouyer J. J., Park D. H., Joh T. H., Pickel V. M. Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase-containing terminals in rat neostriatum. Brain Res. 1984 Jun 8;302(2):267–275. doi: 10.1016/0006-8993(84)90239-7. [DOI] [PubMed] [Google Scholar]
  12. Brotchie J. M., Crossman A. R. D-[3H]aspartate and [14C]GABA uptake in the basal ganglia of rats following lesions in the subthalamic region suggest a role for excitatory amino acid but not GABA-mediated transmission in subthalamic nucleus efferents. Exp Neurol. 1991 Aug;113(2):171–181. doi: 10.1016/0014-4886(91)90173-a. [DOI] [PubMed] [Google Scholar]
  13. Brotchie J. M., Mitchell I. J., Sambrook M. A., Crossman A. R. Alleviation of parkinsonism by antagonism of excitatory amino acid transmission in the medial segment of the globus pallidus in rat and primate. Mov Disord. 1991;6(2):133–138. doi: 10.1002/mds.870060208. [DOI] [PubMed] [Google Scholar]
  14. Brotchie J., Crossman A., Mitchell I., Duty S., Carroll C., Cooper A., Henry B., Hughes N., Maneuf Y. Chemical signalling in the globus pallidus in parkinsonism. Prog Brain Res. 1993;99:125–139. doi: 10.1016/s0079-6123(08)61342-4. [DOI] [PubMed] [Google Scholar]
  15. Burns R. S., Chiueh C. C., Markey S. P., Ebert M. H., Jacobowitz D. M., Kopin I. J. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4546–4550. doi: 10.1073/pnas.80.14.4546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Calabresi P., Centonze D., Gubellini P., Marfia G. A., Bernardi G. Glutamate-triggered events inducing corticostriatal long-term depression. J Neurosci. 1999 Jul 15;19(14):6102–6110. doi: 10.1523/JNEUROSCI.19-14-06102.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Calabresi P., De Murtas M., Mercuri N. B., Bernardi G. Kainic acid on neostriatal neurons intracellularly recorded in vitro: electrophysiological evidence for differential neuronal sensitivity. J Neurosci. 1990 Dec;10(12):3960–3969. doi: 10.1523/JNEUROSCI.10-12-03960.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Calabresi P., Maj R., Pisani A., Mercuri N. B., Bernardi G. Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci. 1992 Nov;12(11):4224–4233. doi: 10.1523/JNEUROSCI.12-11-04224.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Carpenter M. B., Jayaraman A. Subthalamic nucleus of the monkey: connections and immunocytochemical features of afferents. J Hirnforsch. 1990;31(5):653–668. [PubMed] [Google Scholar]
  20. Carroll C. B., Holloway V., Brotchie J. M., Mitchell I. J. Neurochemical and behavioural investigations of the NMDA receptor-associated glycine site in the rat striatum: functional implications for treatment of parkinsonian symptoms. Psychopharmacology (Berl) 1995 May;119(1):55–65. doi: 10.1007/BF02246054. [DOI] [PubMed] [Google Scholar]
  21. Chang H. T., Kita H., Kitai S. T. The ultrastructural morphology of the subthalamic-nigral axon terminals intracellularly labeled with horseradish peroxidase. Brain Res. 1984 May 7;299(1):182–185. doi: 10.1016/0006-8993(84)90805-9. [DOI] [PubMed] [Google Scholar]
  22. Chen Q., Reiner A. Cellular distribution of the NMDA receptor NR2A/2B subunits in the rat striatum. Brain Res. 1996 Dec 16;743(1-2):346–352. doi: 10.1016/s0006-8993(96)01098-0. [DOI] [PubMed] [Google Scholar]
  23. Ciabarra A. M., Sullivan J. M., Gahn L. G., Pecht G., Heinemann S., Sevarino K. A. Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci. 1995 Oct;15(10):6498–6508. doi: 10.1523/JNEUROSCI.15-10-06498.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Consolo S., Baldi G., Giorgi S., Nannini L. The cerebral cortex and parafascicular thalamic nucleus facilitate in vivo acetylcholine release in the rat striatum through distinct glutamate receptor subtypes. Eur J Neurosci. 1996 Dec;8(12):2702–2710. doi: 10.1111/j.1460-9568.1996.tb01565.x. [DOI] [PubMed] [Google Scholar]
  25. Consolo S., Baronio P., Guidi G., Di Chiara G. Role of the parafascicular thalamic nucleus and N-methyl-D-aspartate transmission in the D1-dependent control of in vivo acetylcholine release in rat striatum. Neuroscience. 1996 Mar;71(1):157–165. doi: 10.1016/0306-4522(95)00421-1. [DOI] [PubMed] [Google Scholar]
  26. Crossman A. R., Peggs D., Boyce S., Luquin M. R., Sambrook M. A. Effect of the NMDA antagonist MK-801 on MPTP-induced parkinsonism in the monkey. Neuropharmacology. 1989 Nov;28(11):1271–1273. doi: 10.1016/0028-3908(89)90221-9. [DOI] [PubMed] [Google Scholar]
  27. Das S., Sasaki Y. F., Rothe T., Premkumar L. S., Takasu M., Crandall J. E., Dikkes P., Conner D. A., Rayudu P. V., Cheung W. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature. 1998 May 28;393(6683):377–381. doi: 10.1038/30748. [DOI] [PubMed] [Google Scholar]
  28. East S. J., Parry-Jones A., Brotchie J. M. Ionotropic glutamate receptors and nitric oxide synthesis in the rat striatum. Neuroreport. 1996 Dec 20;8(1):71–75. doi: 10.1097/00001756-199612200-00015. [DOI] [PubMed] [Google Scholar]
  29. Errami M., Nieoullon A. Development of a micromethod to study the Na+-independent L-[3H]glutamic acid binding to rat striatal membranes. II. Effects of selective striatal lesions and deafferentations. Brain Res. 1986 Feb 26;366(1-2):178–186. doi: 10.1016/0006-8993(86)91293-x. [DOI] [PubMed] [Google Scholar]
  30. Fonnum F., Gottesfeld Z., Grofova I. Distribution of glutamate decarboxylase, choline acetyl-transferase and aromatic amino acid decarboxylase in the basal ganglia of normal and operated rats. Evidence for striatopallidal, striatoentopeduncular and striatonigral GABAergic fibres. Brain Res. 1978 Mar 17;143(1):125–138. doi: 10.1016/0006-8993(78)90756-4. [DOI] [PubMed] [Google Scholar]
  31. Féger J., Bevan M., Crossman A. R. The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations: a comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labelling study. Neuroscience. 1994 May;60(1):125–132. doi: 10.1016/0306-4522(94)90208-9. [DOI] [PubMed] [Google Scholar]
  32. Gerfen C. R., Young W. S., 3rd Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res. 1988 Sep 13;460(1):161–167. doi: 10.1016/0006-8993(88)91217-6. [DOI] [PubMed] [Google Scholar]
  33. Graybiel A. M. Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci. 1990 Jul;13(7):244–254. doi: 10.1016/0166-2236(90)90104-i. [DOI] [PubMed] [Google Scholar]
  34. Greenamyre J. T., O'Brien C. F. N-methyl-D-aspartate antagonists in the treatment of Parkinson's disease. Arch Neurol. 1991 Sep;48(9):977–981. doi: 10.1001/archneur.1991.00530210109030. [DOI] [PubMed] [Google Scholar]
  35. Hammond C., Deniau J. M., Rizk A., Feger J. Electrophysiological demonstration of an excitatory subthalamonigral pathway in the rat. Brain Res. 1978 Aug 4;151(2):235–244. doi: 10.1016/0006-8993(78)90881-8. [DOI] [PubMed] [Google Scholar]
  36. Hassler R., Haug P., Nitsch C., Kim J. S., Paik K. Effect of motor and premotor cortex ablation on concentrations of amino acids, monoamines, and acetylcholine and on the ultrastructure in rat striatum. A confirmation of glutamate as the specific cortico-striatal transmitter. J Neurochem. 1982 Apr;38(4):1087–1098. doi: 10.1111/j.1471-4159.1982.tb05352.x. [DOI] [PubMed] [Google Scholar]
  37. Hattori T., McGeer E. G., McGeer P. L. Fine structural analysis of the cortico-striatal pathway. J Comp Neurol. 1979 May 15;185(2):347–353. doi: 10.1002/cne.901850208. [DOI] [PubMed] [Google Scholar]
  38. Kemp J. M., Powell T. P. The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: a study with the Golgi method. Philos Trans R Soc Lond B Biol Sci. 1971 Sep 30;262(845):429–439. doi: 10.1098/rstb.1971.0105. [DOI] [PubMed] [Google Scholar]
  39. Klockgether T., Turski L. NMDA antagonists potentiate antiparkinsonian actions of L-dopa in monoamine-depleted rats. Ann Neurol. 1990 Oct;28(4):539–546. doi: 10.1002/ana.410280411. [DOI] [PubMed] [Google Scholar]
  40. Landwehrmeyer G. B., Standaert D. G., Testa C. M., Penney J. B., Jr, Young A. B. NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum. J Neurosci. 1995 Jul;15(7 Pt 2):5297–5307. doi: 10.1523/JNEUROSCI.15-07-05297.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Langston J. W., Ballard P., Tetrud J. W., Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983 Feb 25;219(4587):979–980. doi: 10.1126/science.6823561. [DOI] [PubMed] [Google Scholar]
  42. Langston J. W., Forno L. S., Rebert C. S., Irwin I. Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res. 1984 Feb 6;292(2):390–394. doi: 10.1016/0006-8993(84)90777-7. [DOI] [PubMed] [Google Scholar]
  43. Lapper S. R., Bolam J. P. Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience. 1992 Dec;51(3):533–545. doi: 10.1016/0306-4522(92)90293-b. [DOI] [PubMed] [Google Scholar]
  44. Laube B., Kuhse J., Betz H. Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci. 1998 Apr 15;18(8):2954–2961. doi: 10.1523/JNEUROSCI.18-08-02954.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Meguro H., Mori H., Araki K., Kushiya E., Kutsuwada T., Yamazaki M., Kumanishi T., Arakawa M., Sakimura K., Mishina M. Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature. 1992 May 7;357(6373):70–74. doi: 10.1038/357070a0. [DOI] [PubMed] [Google Scholar]
  46. Meredith G. E., Wouterlood F. G. Hippocampal and midline thalamic fibers and terminals in relation to the choline acetyltransferase-immunoreactive neurons in nucleus accumbens of the rat: a light and electron microscopic study. J Comp Neurol. 1990 Jun 8;296(2):204–221. doi: 10.1002/cne.902960203. [DOI] [PubMed] [Google Scholar]
  47. Monaghan D. T., Bridges R. J., Cotman C. W. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol. 1989;29:365–402. doi: 10.1146/annurev.pa.29.040189.002053. [DOI] [PubMed] [Google Scholar]
  48. Mori H., Mishina M. Structure and function of the NMDA receptor channel. Neuropharmacology. 1995 Oct;34(10):1219–1237. doi: 10.1016/0028-3908(95)00109-j. [DOI] [PubMed] [Google Scholar]
  49. Naito A., Kita H. The cortico-nigral projection in the rat: an anterograde tracing study with biotinylated dextran amine. Brain Res. 1994 Feb 21;637(1-2):317–322. doi: 10.1016/0006-8993(94)91252-1. [DOI] [PubMed] [Google Scholar]
  50. Nakanishi N., Axel R., Shneider N. A. Alternative splicing generates functionally distinct N-methyl-D-aspartate receptors. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8552–8556. doi: 10.1073/pnas.89.18.8552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Nankai M., Klarica M., Fage D., Carter C. The pharmacology of native N-methyl-D-aspartate receptor subtypes: different receptors control the release of different striatal and spinal transmitters. Prog Neuropsychopharmacol Biol Psychiatry. 1998 Jan;22(1):35–64. doi: 10.1016/s0278-5846(97)00180-2. [DOI] [PubMed] [Google Scholar]
  52. Nash J. E., Hill M. P., Brotchie J. M. Antiparkinsonian actions of blockade of NR2B-containing NMDA receptors in the reserpine-treated rat. Exp Neurol. 1999 Jan;155(1):42–48. doi: 10.1006/exnr.1998.6963. [DOI] [PubMed] [Google Scholar]
  53. Ozawa S., Kamiya H., Tsuzuki K. Glutamate receptors in the mammalian central nervous system. Prog Neurobiol. 1998 Apr;54(5):581–618. doi: 10.1016/s0301-0082(97)00085-3. [DOI] [PubMed] [Google Scholar]
  54. Papa S. M., Boldry R. C., Engber T. M., Kask A. M., Chase T. N. Reversal of levodopa-induced motor fluctuations in experimental parkinsonism by NMDA receptor blockade. Brain Res. 1995 Dec 1;701(1-2):13–18. doi: 10.1016/0006-8993(95)00924-3. [DOI] [PubMed] [Google Scholar]
  55. Papa S. M., Chase T. N. Levodopa-induced dyskinesias improved by a glutamate antagonist in Parkinsonian monkeys. Ann Neurol. 1996 May;39(5):574–578. doi: 10.1002/ana.410390505. [DOI] [PubMed] [Google Scholar]
  56. Parent A., Mackey A., De Bellefeuille L. The subcortical afferents to caudate nucleus and putamen in primate: a fluorescence retrograde double labeling study. Neuroscience. 1983 Dec;10(4):1137–1150. doi: 10.1016/0306-4522(83)90104-5. [DOI] [PubMed] [Google Scholar]
  57. Robertson R. G., Farmery S. M., Sambrook M. A., Crossman A. R. Dyskinesia in the primate following injection of an excitatory amino acid antagonist into the medial segment of the globus pallidus. Brain Res. 1989 Jan 9;476(2):317–322. doi: 10.1016/0006-8993(89)91252-3. [DOI] [PubMed] [Google Scholar]
  58. Sadikot A. F., Parent A., François C. Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol. 1992 Jan 8;315(2):137–159. doi: 10.1002/cne.903150203. [DOI] [PubMed] [Google Scholar]
  59. Sadikot A. F., Parent A., Smith Y., Bolam J. P. Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a light and electron microscopic study of the thalamostriatal projection in relation to striatal heterogeneity. J Comp Neurol. 1992 Jun 8;320(2):228–242. doi: 10.1002/cne.903200207. [DOI] [PubMed] [Google Scholar]
  60. Shukla V. K., Prasad J. A., Lemaire S. Nonopioid motor effects of dynorphin A and related peptides: structure dependence and role of the N-methyl-D-aspartate receptor. J Pharmacol Exp Ther. 1997 Nov;283(2):604–610. [PubMed] [Google Scholar]
  61. Smith Y., Hazrati L. N., Parent A. Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by the PHA-L anterograde tracing method. J Comp Neurol. 1990 Apr 8;294(2):306–323. doi: 10.1002/cne.902940213. [DOI] [PubMed] [Google Scholar]
  62. Snyder G. L., Fienberg A. A., Huganir R. L., Greengard P. A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J Neurosci. 1998 Dec 15;18(24):10297–10303. doi: 10.1523/JNEUROSCI.18-24-10297.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Somers D. L., Beckstead R. M. N-methyl-D-aspartate receptor antagonism alters substance P and met5-enkephalin biosynthesis in neurons of the rat striatum. J Pharmacol Exp Ther. 1992 Aug;262(2):823–833. [PubMed] [Google Scholar]
  64. Spencer H. J. Antagonism of cortical excitation of striatal neurons by glutamic acid diethyl ester: evidence for glutamic acid as an excitatory transmitter in the rat striatum. Brain Res. 1976 Jan 30;102(1):91–101. doi: 10.1016/0006-8993(76)90577-1. [DOI] [PubMed] [Google Scholar]
  65. Spieker S., Löschmann P. A., Klockgether T. The NMDA antagonist budipine can alleviate levodopa-induced motor fluctuations. Mov Disord. 1999 May;14(3):517–519. doi: 10.1002/1531-8257(199905)14:3<517::aid-mds1025>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  66. Standaert D. G., Testa C. M., Young A. B., Penney J. B., Jr Organization of N-methyl-D-aspartate glutamate receptor gene expression in the basal ganglia of the rat. J Comp Neurol. 1994 May 1;343(1):1–16. doi: 10.1002/cne.903430102. [DOI] [PubMed] [Google Scholar]
  67. Sucher N. J., Akbarian S., Chi C. L., Leclerc C. L., Awobuluyi M., Deitcher D. L., Wu M. K., Yuan J. P., Jones E. G., Lipton S. A. Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci. 1995 Oct;15(10):6509–6520. doi: 10.1523/JNEUROSCI.15-10-06509.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Turski L., Bressler K., Rettig K. J., Löschmann P. A., Wachtel H. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature. 1991 Jan 31;349(6308):414–418. doi: 10.1038/349414a0. [DOI] [PubMed] [Google Scholar]
  69. Uhl G. R., Navia B., Douglas J. Differential expression of preproenkephalin and preprodynorphin mRNAs in striatal neurons: high levels of preproenkephalin expression depend on cerebral cortical afferents. J Neurosci. 1988 Dec;8(12):4755–4764. doi: 10.1523/JNEUROSCI.08-12-04755.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Verhagen Metman L., Del Dotto P., Blanchet P. J., van den Munckhof P., Chase T. N. Blockade of glutamatergic transmission as treatment for dyskinesias and motor fluctuations in Parkinson's disease. Amino Acids. 1998;14(1-3):75–82. doi: 10.1007/BF01345246. [DOI] [PubMed] [Google Scholar]
  71. Verhagen Metman L., Del Dotto P., van den Munckhof P., Fang J., Mouradian M. M., Chase T. N. Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson's disease. Neurology. 1998 May;50(5):1323–1326. doi: 10.1212/wnl.50.5.1323. [DOI] [PubMed] [Google Scholar]
  72. Vonsattel J. P., Myers R. H., Stevens T. J., Ferrante R. J., Bird E. D., Richardson E. P., Jr Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol. 1985 Nov;44(6):559–577. doi: 10.1097/00005072-198511000-00003. [DOI] [PubMed] [Google Scholar]
  73. Wenzel A., Scheurer L., Künzi R., Fritschy J. M., Mohler H., Benke D. Distribution of NMDA receptor subunit proteins NR2A, 2B, 2C and 2D in rat brain. Neuroreport. 1995 Dec 29;7(1):45–48. [PubMed] [Google Scholar]
  74. Wüllner U., Kupsch A., Arnold G., Renner P., Scheid C., Scheid R., Oertel W., Klockgether T. The competitive NMDA antagonist CGP40.116 enhances L-dopa response in MPTP-treated marmosets. Neuropharmacology. 1992 Jul;31(7):713–715. doi: 10.1016/0028-3908(92)90151-e. [DOI] [PubMed] [Google Scholar]
  75. Yamakura T., Shimoji K. Subunit- and site-specific pharmacology of the NMDA receptor channel. Prog Neurobiol. 1999 Oct;59(3):279–298. doi: 10.1016/s0301-0082(99)00007-6. [DOI] [PubMed] [Google Scholar]
  76. Young A. B., Greenamyre J. T., Hollingsworth Z., Albin R., D'Amato C., Shoulson I., Penney J. B. NMDA receptor losses in putamen from patients with Huntington's disease. Science. 1988 Aug 19;241(4868):981–983. doi: 10.1126/science.2841762. [DOI] [PubMed] [Google Scholar]
  77. Zhang L., Peoples R. W., Oz M., Harvey-White J., Weight F. F., Brauneis U. Potentiation of NMDA receptor-mediated responses by dynorphin at low extracellular glycine concentrations. J Neurophysiol. 1997 Aug;78(2):582–590. doi: 10.1152/jn.1997.78.2.582. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES