Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2000 Jul;197(Pt 1):77–101. doi: 10.1046/j.1469-7580.2000.19710077.x

Progress in understanding hominoid dental development

CHRISTOPHER DEAN 1,
PMCID: PMC1468109  PMID: 10999272

Abstract

Teeth preserve a record of the way they grow in the form of incremental markings in enamel, dentine and cementum. These make it possible to reconstruct cellular activity and the timing of dental development in living and fossil primates, including hominids. They also provide a way of exploring the mechanisms that underlie morphological change during evolution and the nature of the relationship between ontogeny and phylogeny. All living great apes are dentally mature by about 11 y, irrespective of their body mass. While the early period of root formation in living great apes is shorter than in modern humans, enamel takes approximately the same time to form, irrespective of how thick it is. In general, differences in the total time taken to form enamel seem not to be due to differences in the rate at which enamel and dentine are secreted, but rather to faster or slower rates of differentiation of ameloblasts and odontoblasts and therefore to the number of secretory cells active at any one time during tooth formation. Tooth size, especially height, may influence the sequence of appearance of tooth mineralisation stages. The space available in the jaws may also have an influence on both the timing of tooth bud/crypt appearance and the sequence of gingival emergence. When each of these potential influences on dental development are carefully considered, and incremental markings used to calibrate key events, the developing dentition can provide an estimate of the period of dental maturation in fossil hominoids. However, the influence of body mass on the period of dental development among primates remains unclear. The earliest hominoids, dated at around 18 Mya, may still have had modern monkey-like maturational profiles, and the earliest hominids, dated between 1.8 and 3.7 Mya, modern great ape-like maturational profiles. Exactly when the extended or prolonged modern human-like maturational profile first appeared remains debatable, but the most secure suggestion might be at the time of the appearance of the earliest archaic Homo sapiens, when brain size and body mass were finally both within the ranges known for modern humans. But at present we should not reject the hypothesis that an extended, modern human-like, maturational profile arose more than once during human evolution in parallel with an increase in brain size.

Keywords: Teeth, enamel, dentine, incremental markings, primates

Full Text

The Full Text of this article is available as a PDF (923.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anemone R. L., Mooney M. P., Siegel M. I. Longitudinal study of dental development in chimpanzees of known chronological age: implications for understanding the age at death of Plio-Pleistocene hominids. Am J Phys Anthropol. 1996 Jan;99(1):119–133. doi: 10.1002/(SICI)1096-8644(199601)99:1<119::AID-AJPA7>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  2. Arsuaga J. L., Lorenzo C., Carretero J. M., Gracia A., Martínez I., García N., Bermúdez de Castro J. M., Carbonell E. A complete human pelvis from the Middle Pleistocene of Spain. Nature. 1999 May 20;399(6733):255–258. doi: 10.1038/20430. [DOI] [PubMed] [Google Scholar]
  3. BROOM R., ROBINSON J. T. Eruption of the permanent teeth in the South African fossil ape-men. Nature. 1951 Mar 17;167(4246):443–443. doi: 10.1038/167443a0. [DOI] [PubMed] [Google Scholar]
  4. Bermúdez de Castro J. M., Rosas A., Carbonell E., Nicolás M. E., Rodríguez J., Arsuaga J. L. A modern human pattern of dental development in lower pleistocene hominids from Atapuerca-TD6 (Spain). Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4210–4213. doi: 10.1073/pnas.96.7.4210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beynon A. D., Dean M. C. Distinct dental development patterns in early fossil hominids. Nature. 1988 Oct 6;335(6190):509–514. doi: 10.1038/335509a0. [DOI] [PubMed] [Google Scholar]
  6. Beynon A. D., Dean M. C., Leakey M. G., Reid D. J., Walker A. Comparative dental development and microstructure of Proconsul teeth from Rusinga Island, Kenya. J Hum Evol. 1998 Aug;35(2):163–209. doi: 10.1006/jhev.1998.0230. [DOI] [PubMed] [Google Scholar]
  7. Beynon A. D., Wood B. A. Patterns and rates of enamel growth in the molar teeth of early hominids. Nature. 1987 Apr 2;326(6112):493–496. doi: 10.1038/326493a0. [DOI] [PubMed] [Google Scholar]
  8. Beynon A. D., Wood B. A. Variations in enamel thickness and structure in East African hominids. Am J Phys Anthropol. 1986 Jun;70(2):177–193. doi: 10.1002/ajpa.1330700205. [DOI] [PubMed] [Google Scholar]
  9. Boyde A. Carbonate concentration, crystal centers, core dissolution, caries, cross striations, circadian rhythms, and compositional contrast in the SEM. J Dent Res. 1979 Mar;58(SPEC):981–983. doi: 10.1177/00220345790580025101. [DOI] [PubMed] [Google Scholar]
  10. CLEMENTS E. M., ZUCKERMAN S. The order of eruption of the permanent teeth in the hominoidea. Am J Phys Anthropol. 1953 Sep;11(3):313–337. doi: 10.1002/ajpa.1330110309. [DOI] [PubMed] [Google Scholar]
  11. Clegg M., Aiello L. C. A comparison of the nariokotome Homo erectus with juveniles from a modern human population. Am J Phys Anthropol. 1999 Sep;110(1):81–93. doi: 10.1002/(SICI)1096-8644(199909)110:1<81::AID-AJPA7>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  12. Conroy G. C. Alleged synapomorphy of the M1/I1 eruption pattern in robust australopithecines and Homo: evidence from high-resolution computed tomography. Am J Phys Anthropol. 1988 Apr;75(4):487–492. doi: 10.1002/ajpa.1330750406. [DOI] [PubMed] [Google Scholar]
  13. Conroy G. C., Kuykendall K. Paleopediatrics: or when did human infants really become human? Am J Phys Anthropol. 1995 Oct;98(2):121–131. doi: 10.1002/ajpa.1330980203. [DOI] [PubMed] [Google Scholar]
  14. Conroy G. C., Vannier M. W. Dental development of the Taung skull from computerized tomography. Nature. 1987 Oct 15;329(6140):625–627. doi: 10.1038/329625a0. [DOI] [PubMed] [Google Scholar]
  15. Dean M. C. A comparative study of cross striation spacings in cuspal enamel and of four methods of estimating the time taken to grow molar cuspal enamel in Pan, Pongo and Homo. J Hum Evol. 1998 Oct-Nov;35(4-5):449–462. doi: 10.1006/jhev.1998.0208. [DOI] [PubMed] [Google Scholar]
  16. Dean M. C. A comparative study of cross striation spacings in cuspal enamel and of four methods of estimating the time taken to grow molar cuspal enamel in Pan, Pongo and Homo. J Hum Evol. 1998 Oct-Nov;35(4-5):449–462. doi: 10.1006/jhev.1998.0208. [DOI] [PubMed] [Google Scholar]
  17. Dean M. C., Beynon A. D., Thackeray J. F., Macho G. A. Histological reconstruction of dental development and age at death of a juvenile Paranthropus robustus specimen, SK 63, from Swartkrans, South Africa. Am J Phys Anthropol. 1993 Aug;91(4):401–419. doi: 10.1002/ajpa.1330910402. [DOI] [PubMed] [Google Scholar]
  18. Dean M. C., Beynon A. D. Tooth crown heights, tooth wear, sexual dimorphism and jaw growth in hominoids. Z Morphol Anthropol. 1991;78(3):425–440. [PubMed] [Google Scholar]
  19. Dean M. C. Comparative observations on the spacing of short-period (von Ebner's) lines in dentine. Arch Oral Biol. 1998 Dec;43(12):1009–1021. doi: 10.1016/s0003-9969(98)00069-7. [DOI] [PubMed] [Google Scholar]
  20. Dean M. C. Of faster brains and bigger teeth. Nature. 1987 Nov 19;330(6145):213–213. doi: 10.1038/330213a0. [DOI] [PubMed] [Google Scholar]
  21. Dean M. C., Scandrett A. E. The relation between long-period incremental markings in dentine and daily cross-striations in enamel in human teeth. Arch Oral Biol. 1996 Mar;41(3):233–241. doi: 10.1016/0003-9969(95)00137-9. [DOI] [PubMed] [Google Scholar]
  22. Dean M. C., Shellis R. P. Observations on stria morphology in the lateral enamel of Pongo, Hylobates and Proconsul teeth. J Hum Evol. 1998 Oct-Nov;35(4-5):401–410. doi: 10.1006/jhev.1998.0243. [DOI] [PubMed] [Google Scholar]
  23. Dean M. C. The developing dentition and tooth structure in hominoids. Folia Primatol (Basel) 1989;53(1-4):160–176. doi: 10.1159/000156414. [DOI] [PubMed] [Google Scholar]
  24. Dean M. C. The eruption pattern of the permanent incisors and first permanent molars in Australopithecus (Paranthropus) robustus. Am J Phys Anthropol. 1985 Jul;67(3):251–257. doi: 10.1002/ajpa.1330670310. [DOI] [PubMed] [Google Scholar]
  25. Dean M. C. Variation in the developing root cone angle of the permanent mandibular teeth of modern man and certain fossil hominids. Am J Phys Anthropol. 1985 Oct;68(2):233–238. doi: 10.1002/ajpa.1330680210. [DOI] [PubMed] [Google Scholar]
  26. Dean M. C., Wood B. A. Developing pongid dentition and its use for ageing individual crania in comparative cross-sectional growth studies. Folia Primatol (Basel) 1981;36(1-2):111–127. doi: 10.1159/000156011. [DOI] [PubMed] [Google Scholar]
  27. Dirks W. Histological reconstruction of dental development and age at death in a juvenile gibbon (Hylobates lar). J Hum Evol. 1998 Oct-Nov;35(4-5):411–425. doi: 10.1006/jhev.1997.0185. [DOI] [PubMed] [Google Scholar]
  28. Erickson G. M. Incremental lines of von Ebner in dinosaurs and the assessment of tooth replacement rates using growth line counts. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14623–14627. doi: 10.1073/pnas.93.25.14623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. FitzGerald C. M. Do enamel microstructures have regular time dependency? Conclusions from the literature and a large-scale study. J Hum Evol. 1998 Oct-Nov;35(4-5):371–386. doi: 10.1006/jhev.1998.0232. [DOI] [PubMed] [Google Scholar]
  30. Grine F. E. On the eruption pattern of the permanent incisors and first permanent molars in Paranthropus. Am J Phys Anthropol. 1987 Mar;72(3):353–359. doi: 10.1002/ajpa.1330720308. [DOI] [PubMed] [Google Scholar]
  31. Jernvall J., Aberg T., Kettunen P., Keränen S., Thesleff I. The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development. 1998 Jan;125(2):161–169. doi: 10.1242/dev.125.2.161. [DOI] [PubMed] [Google Scholar]
  32. Jernvall J., Kettunen P., Karavanova I., Martin L. B., Thesleff I. Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int J Dev Biol. 1994 Sep;38(3):463–469. [PubMed] [Google Scholar]
  33. Keith A. Growth of Brain in Men and Monkeys, with a Short Criticism of the Usual Method of stating Brain-Ratios. J Anat Physiol. 1895 Jan;29(Pt 2):282–303. [PMC free article] [PubMed] [Google Scholar]
  34. Kollar E. J., Baird G. R. The influence of the dental papilla on the development of tooth shape in embryonic mouse tooth germs. J Embryol Exp Morphol. 1969 Feb;21(1):131–148. [PubMed] [Google Scholar]
  35. Kuykendall K. L., Conroy G. C. Permanent tooth calcification in chimpanzees (Pan troglodytes): patterns and polymorphisms. Am J Phys Anthropol. 1996 Jan;99(1):159–174. doi: 10.1002/(SICI)1096-8644(199601)99:1<159::AID-AJPA9>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  36. Kuykendall K. L. Dental development in chimpanzees (Pan troglodytes): the timing of tooth calcification stages. Am J Phys Anthropol. 1996 Jan;99(1):135–157. doi: 10.1002/(SICI)1096-8644(199601)99:1<135::AID-AJPA8>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  37. Kuykendall K. L., Mahoney C. J., Conroy G. C. Probit and survival analysis of tooth emergence ages in a mixed-longitudinal sample of chimpanzees (Pan troglodytes). Am J Phys Anthropol. 1992 Nov;89(3):379–399. doi: 10.1002/ajpa.1330890310. [DOI] [PubMed] [Google Scholar]
  38. Köntges G., Lumsden A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development. 1996 Oct;122(10):3229–3242. doi: 10.1242/dev.122.10.3229. [DOI] [PubMed] [Google Scholar]
  39. Leigh S. R., Park P. B. Evolution of human growth prolongation. Am J Phys Anthropol. 1998 Nov;107(3):331–350. doi: 10.1002/(SICI)1096-8644(199811)107:3<331::AID-AJPA9>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  40. Lieberman D. E. Life history variables preserved in dental cementum microstructure. Science. 1993 Aug 27;261(5125):1162–1164. doi: 10.1126/science.8356448. [DOI] [PubMed] [Google Scholar]
  41. Liversidge H. M., Dean M. C., Molleson T. I. Increasing human tooth length between birth and 5.4 years. Am J Phys Anthropol. 1993 Mar;90(3):307–313. doi: 10.1002/ajpa.1330900305. [DOI] [PubMed] [Google Scholar]
  42. Macho G. A., Berner M. E. Enamel thickness and the helicoidal occlusal plane. Am J Phys Anthropol. 1994 Jul;94(3):327–337. doi: 10.1002/ajpa.1330940304. [DOI] [PubMed] [Google Scholar]
  43. Macho G. A., Berner M. E. Enamel thickness of human maxillary molars reconsidered. Am J Phys Anthropol. 1993 Oct;92(2):189–200. doi: 10.1002/ajpa.1330920208. [DOI] [PubMed] [Google Scholar]
  44. Macho G. A. Variation in enamel thickness and cusp area within human maxillary molars and its bearing on scaling techniques used for studies of enamel thickness between species. Arch Oral Biol. 1994 Sep;39(9):783–792. doi: 10.1016/0003-9969(94)90008-6. [DOI] [PubMed] [Google Scholar]
  45. Moggi-Cecchi J., Tobias P. V., Beynon A. D. The mixed dentition and associated skull fragments of a juvenile fossil hominid from Sterkfontein, South Africa. Am J Phys Anthropol. 1998 Aug;106(4):425–465. doi: 10.1002/(SICI)1096-8644(199808)106:4<425::AID-AJPA2>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  46. NISSEN H. W., RIESEN A. H. THE ERUPTION OF THE PERMANENT DENTITION OF CHIMPANZEE. Am J Phys Anthropol. 1964 Sep;22:285–294. doi: 10.1002/ajpa.1330220315. [DOI] [PubMed] [Google Scholar]
  47. Oka S. W., Kraus B. S. The circumnatal status of molar crown maturation among the hominoidea. Arch Oral Biol. 1969 Jun;14(6):639–659. doi: 10.1016/0003-9969(69)90187-3. [DOI] [PubMed] [Google Scholar]
  48. Ramirez Rozzi F. Can enamel microstructure be used to establish the presence of different species of Plio-Pleistocene hominids from Omo, Ethiopia? J Hum Evol. 1998 Oct-Nov;35(4-5):543–576. [PubMed] [Google Scholar]
  49. Reid D. J., Schwartz G. T., Dean C., Chandrasekera M. S. A histological reconstruction of dental development in the common chimpanzee, Pan troglodytes. J Hum Evol. 1998 Oct-Nov;35(4-5):427–448. doi: 10.1006/jhev.1998.0248. [DOI] [PubMed] [Google Scholar]
  50. Schwartz G. T. Taxonomic and functional aspects of the patterning of enamel thickness distribution in extant large-bodied hominoids. Am J Phys Anthropol. 2000 Feb;111(2):221–244. doi: 10.1002/(SICI)1096-8644(200002)111:2<221::AID-AJPA8>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  51. Schwartz J. H. Homeobox genes, fossils, and the origin of species. Anat Rec. 1999 Feb 15;257(1):15–31. doi: 10.1002/(SICI)1097-0185(19990215)257:1<15::AID-AR5>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  52. Sharpe P. T. Homeobox genes and orofacial development. Connect Tissue Res. 1995;32(1-4):17–25. doi: 10.3109/03008209509013701. [DOI] [PubMed] [Google Scholar]
  53. Shea B. T. Allometry and heterochrony in the African apes. Am J Phys Anthropol. 1983 Nov;62(3):275–289. doi: 10.1002/ajpa.1330620307. [DOI] [PubMed] [Google Scholar]
  54. Shellis R. P., Beynon A. D., Reid D. J., Hiiemae K. M. Variations in molar enamel thickness among primates. J Hum Evol. 1998 Oct-Nov;35(4-5):507–522. doi: 10.1006/jhev.1998.0238. [DOI] [PubMed] [Google Scholar]
  55. Shellis R. P. Utilization of periodic markings in enamel to obtain information on tooth growth. J Hum Evol. 1998 Oct-Nov;35(4-5):387–400. doi: 10.1006/jhev.1998.0260. [DOI] [PubMed] [Google Scholar]
  56. Shellis R. P. Variations in growth of the enamel crown in human teeth and a possible relationship between growth and enamel structure. Arch Oral Biol. 1984;29(9):697–705. doi: 10.1016/0003-9969(84)90175-4. [DOI] [PubMed] [Google Scholar]
  57. Simpson S. W., Lovejoy C. O., Meindl R. S. Further evidence on relative dental maturation and somatic developmental rate in hominoids. Am J Phys Anthropol. 1992 Jan;87(1):29–38. doi: 10.1002/ajpa.1330870104. [DOI] [PubMed] [Google Scholar]
  58. Smith B. H. Patterns of dental development in Homo, Australopithecus, Pan, and Gorilla. Am J Phys Anthropol. 1994 Jul;94(3):307–325. doi: 10.1002/ajpa.1330940303. [DOI] [PubMed] [Google Scholar]
  59. Tarrant L. H., Swindler D. R. The state of the deciduous dentition of a chimpanzee fetus (Pan troglodytes). J Dent Res. 1972 Mar-Apr;51(2):677–677. doi: 10.1177/00220345720510028301. [DOI] [PubMed] [Google Scholar]
  60. Thesleff I., Aberg T. Tooth morphogenesis and the differentiation of ameloblasts. Ciba Found Symp. 1997;205:3–17. [PubMed] [Google Scholar]
  61. Thesleff I., Sharpe P. Signalling networks regulating dental development. Mech Dev. 1997 Oct;67(2):111–123. doi: 10.1016/s0925-4773(97)00115-9. [DOI] [PubMed] [Google Scholar]
  62. Tompkins R. L. Relative dental development of Upper Pleistocene hominids compared to human population variation. Am J Phys Anthropol. 1996 Jan;99(1):103–118. doi: 10.1002/(SICI)1096-8644(199601)99:1<103::AID-AJPA6>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  63. Winkler L. A. A comparison of radiographic and anatomical evidence of tooth development in infant apes. Folia Primatol (Basel) 1995;65(1):1–13. doi: 10.1159/000156864. [DOI] [PubMed] [Google Scholar]
  64. Winkler L. A. Appearance of ossification centers of the lower arm, wrist, lower leg, and ankle in immature orangutans and chimpanzees with an assessment of the relationship of ossification to dental development. Am J Phys Anthropol. 1996 Jan;99(1):191–203. doi: 10.1002/(SICI)1096-8644(199601)99:1<191::AID-AJPA11>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  65. Wolpoff M. H. The Krapina dental remains. Am J Phys Anthropol. 1978 Jan;50(1):67–114. doi: 10.1002/ajpa.1330500110. [DOI] [PubMed] [Google Scholar]
  66. Wood B., Collard M. The human genus. Science. 1999 Apr 2;284(5411):65–71. doi: 10.1126/science.284.5411.65. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES