Abstract
Induction of transcription into long CTG.CAG repeats contained on plasmids in Escherichia coli is shown to increase the frequency of deletions within the repeat sequences. This elevated genetic instability was detected because active transcription into the triplet repeat influenced the growth transitions of the host cell, allowing advantageous growth for cells harboring plasmids with deleted repeat sequences. The variety of deletion products observed in separate cultures suggests that transcription altered the metabolism of the DNA in a manner that produced random length changes in the repeat sequence. For cultures containing plasmids without active transcription into the triplet repeat, or those maintained in exponential growth, deletions occurred within the repeat at a lower frequency (5-20-fold lower). In these incubations the extent of deletions was proportional to the number of cell divisions and many repeat lengths were observed within each culture, suggesting that the decrease in average repeat length at long incubation times was due to multiple small deletions. These observations show that deletions within long CTG.CAG repeats contained on plasmids in E.coli occur via more than one pathway and their level of genetic instability is altered by the enzymatic processes occurring upon the DNA.
Full Text
The Full Text of this article is available as a PDF (430.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aaltonen L. A., Peltomäki P., Leach F. S., Sistonen P., Pylkkänen L., Mecklin J. P., Järvinen H., Powell S. M., Jen J., Hamilton S. R. Clues to the pathogenesis of familial colorectal cancer. Science. 1993 May 7;260(5109):812–816. doi: 10.1126/science.8484121. [DOI] [PubMed] [Google Scholar]
- Ashley C. T., Jr, Warren S. T. Trinucleotide repeat expansion and human disease. Annu Rev Genet. 1995;29:703–728. doi: 10.1146/annurev.ge.29.120195.003415. [DOI] [PubMed] [Google Scholar]
- Bacolla A., Gellibolian R., Shimizu M., Amirhaeri S., Kang S., Ohshima K., Larson J. E., Harvey S. C., Stollar B. D., Wells R. D. Flexible DNA: genetically unstable CTG.CAG and CGG.CCG from human hereditary neuromuscular disease genes. J Biol Chem. 1997 Jul 4;272(27):16783–16792. doi: 10.1074/jbc.272.27.16783. [DOI] [PubMed] [Google Scholar]
- Bowater R. P., Chen D., Lilley D. M. Elevated unconstrained supercoiling of plasmid DNA generated by transcription and translation of the tetracycline resistance gene in eubacteria. Biochemistry. 1994 Aug 9;33(31):9266–9275. doi: 10.1021/bi00197a030. [DOI] [PubMed] [Google Scholar]
- Bowater R. P., Rosche W. A., Jaworski A., Sinden R. R., Wells R. D. Relationship between Escherichia coli growth and deletions of CTG.CAG triplet repeats in plasmids. J Mol Biol. 1996 Nov 22;264(1):82–96. doi: 10.1006/jmbi.1996.0625. [DOI] [PubMed] [Google Scholar]
- Caskey C. T., Pizzuti A., Fu Y. H., Fenwick R. G., Jr, Nelson D. L. Triplet repeat mutations in human disease. Science. 1992 May 8;256(5058):784–789. doi: 10.1126/science.1589758. [DOI] [PubMed] [Google Scholar]
- Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994 Sep 15;371(6494):215–220. doi: 10.1038/371215a0. [DOI] [PubMed] [Google Scholar]
- Chastain P. D., 2nd, Eichler E. E., Kang S., Nelson D. L., Levene S. D., Sinden R. R. Anomalous rapid electrophoretic mobility of DNA containing triplet repeats associated with human disease genes. Biochemistry. 1995 Dec 12;34(49):16125–16131. doi: 10.1021/bi00049a027. [DOI] [PubMed] [Google Scholar]
- Datta A., Jinks-Robertson S. Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science. 1995 Jun 16;268(5217):1616–1619. doi: 10.1126/science.7777859. [DOI] [PubMed] [Google Scholar]
- Deshpande A. M., Newlon C. S. DNA replication fork pause sites dependent on transcription. Science. 1996 May 17;272(5264):1030–1033. doi: 10.1126/science.272.5264.1030. [DOI] [PubMed] [Google Scholar]
- French S. Consequences of replication fork movement through transcription units in vivo. Science. 1992 Nov 20;258(5086):1362–1365. doi: 10.1126/science.1455232. [DOI] [PubMed] [Google Scholar]
- Hengge-Aronis R. Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell. 1993 Jan 29;72(2):165–168. doi: 10.1016/0092-8674(93)90655-a. [DOI] [PubMed] [Google Scholar]
- Jaworski A., Blaho J. A., Larson J. E., Shimizu M., Wells R. D. Tetracycline promoter mutations decrease non-B DNA structural transitions, negative linking differences and deletions in recombinant plasmids in Escherichia coli. J Mol Biol. 1989 Jun 5;207(3):513–526. doi: 10.1016/0022-2836(89)90461-0. [DOI] [PubMed] [Google Scholar]
- Jaworski A., Hsieh W. T., Blaho J. A., Larson J. E., Wells R. D. Left-handed DNA in vivo. Science. 1987 Nov 6;238(4828):773–777. doi: 10.1126/science.3313728. [DOI] [PubMed] [Google Scholar]
- Kang S., Jaworski A., Ohshima K., Wells R. D. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nat Genet. 1995 Jun;10(2):213–218. doi: 10.1038/ng0695-213. [DOI] [PubMed] [Google Scholar]
- Kang S., Ohshima K., Shimizu M., Amirhaeri S., Wells R. D. Pausing of DNA synthesis in vitro at specific loci in CTG and CGG triplet repeats from human hereditary disease genes. J Biol Chem. 1995 Nov 10;270(45):27014–27021. doi: 10.1074/jbc.270.45.27014. [DOI] [PubMed] [Google Scholar]
- Kiyama R., Oishi M. Instability of plasmid DNA maintenance caused by transcription of poly(dT)-containing sequences in Escherichia coli. Gene. 1994 Dec 2;150(1):57–61. doi: 10.1016/0378-1119(94)90857-5. [DOI] [PubMed] [Google Scholar]
- Kolter R., Siegele D. A., Tormo A. The stationary phase of the bacterial life cycle. Annu Rev Microbiol. 1993;47:855–874. doi: 10.1146/annurev.mi.47.100193.004231. [DOI] [PubMed] [Google Scholar]
- Krontiris T. G. Minisatellites and human disease. Science. 1995 Sep 22;269(5231):1682–1683. doi: 10.1126/science.7569893. [DOI] [PubMed] [Google Scholar]
- Kłysik J., Stirdivant S. M., Larson J. E., Hart P. A., Wells R. D. Left-handed DNA in restriction fragments and a recombinant plasmid. Nature. 1981 Apr 23;290(5808):672–677. doi: 10.1038/290672a0. [DOI] [PubMed] [Google Scholar]
- Kłysik J., Stirdivant S. M., Wells R. D. Left-handed DNA. Cloning, characterization, and instability of inserts containing different lengths of (dC-dG) in Escherichia coli. J Biol Chem. 1982 Sep 10;257(17):10152–10158. [PubMed] [Google Scholar]
- Levinson G., Gutman G. A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987 May;4(3):203–221. doi: 10.1093/oxfordjournals.molbev.a040442. [DOI] [PubMed] [Google Scholar]
- Ohshima K., Kang S., Wells R. D. CTG triplet repeats from human hereditary diseases are dominant genetic expansion products in Escherichia coli. J Biol Chem. 1996 Jan 26;271(4):1853–1856. doi: 10.1074/jbc.271.4.1853. [DOI] [PubMed] [Google Scholar]
- Ohshima K., Wells R. D. Hairpin formation during DNA synthesis primer realignment in vitro in triplet repeat sequences from human hereditary disease genes. J Biol Chem. 1997 Jul 4;272(27):16798–16806. doi: 10.1074/jbc.272.27.16798. [DOI] [PubMed] [Google Scholar]
- Paulson H. L., Fischbeck K. H. Trinucleotide repeats in neurogenetic disorders. Annu Rev Neurosci. 1996;19:79–107. doi: 10.1146/annurev.ne.19.030196.000455. [DOI] [PubMed] [Google Scholar]
- Richards R. I., Sutherland G. R. Dynamic mutations: a new class of mutations causing human disease. Cell. 1992 Sep 4;70(5):709–712. doi: 10.1016/0092-8674(92)90302-s. [DOI] [PubMed] [Google Scholar]
- Shimizu M., Gellibolian R., Oostra B. A., Wells R. D. Cloning, characterization and properties of plasmids containing CGG triplet repeats from the FMR-1 gene. J Mol Biol. 1996 May 17;258(4):614–626. doi: 10.1006/jmbi.1996.0273. [DOI] [PubMed] [Google Scholar]
- Stillman B. Smart machines at the DNA replication fork. Cell. 1994 Sep 9;78(5):725–728. doi: 10.1016/s0092-8674(94)90362-x. [DOI] [PubMed] [Google Scholar]
- Sutherland G. R., Richards R. I. Simple tandem DNA repeats and human genetic disease. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3636–3641. doi: 10.1073/pnas.92.9.3636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tautz D., Schlötterer Simple sequences. Curr Opin Genet Dev. 1994 Dec;4(6):832–837. doi: 10.1016/0959-437x(94)90067-1. [DOI] [PubMed] [Google Scholar]
- Thibodeau S. N., Bren G., Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993 May 7;260(5109):816–819. doi: 10.1126/science.8484122. [DOI] [PubMed] [Google Scholar]
- Vilette D., Ehrlich S. D., Michel B. Transcription-induced deletions in Escherichia coli plasmids. Mol Microbiol. 1995 Aug;17(3):493–504. doi: 10.1111/j.1365-2958.1995.mmi_17030493.x. [DOI] [PubMed] [Google Scholar]
- Warren S. T. The expanding world of trinucleotide repeats. Science. 1996 Mar 8;271(5254):1374–1375. doi: 10.1126/science.271.5254.1374. [DOI] [PubMed] [Google Scholar]
- Wells R. D. Molecular basis of genetic instability of triplet repeats. J Biol Chem. 1996 Feb 9;271(6):2875–2878. doi: 10.1074/jbc.271.6.2875. [DOI] [PubMed] [Google Scholar]
- Wierdl M., Greene C. N., Datta A., Jinks-Robertson S., Petes T. D. Destabilization of simple repetitive DNA sequences by transcription in yeast. Genetics. 1996 Jun;143(2):713–721. doi: 10.1093/genetics/143.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willems P. J. Dynamic mutations hit double figures. Nat Genet. 1994 Nov;8(3):213–215. doi: 10.1038/ng1194-213. [DOI] [PubMed] [Google Scholar]
- Zambrano M. M., Kolter R. GASPing for life in stationary phase. Cell. 1996 Jul 26;86(2):181–184. doi: 10.1016/s0092-8674(00)80089-6. [DOI] [PubMed] [Google Scholar]