Abstract
This review considers some recent advances in shape analysis based on landmark data, and focuses on the application of these methods to the study of skeletal evolution in primates. These advances have provoked some controversy. The major aims of this review are to put these debates in context and to provide an overview for the nonmathematician. The purpose of morphometric studies is considered, together with issues relating to the nature, significance and identification of landmarks before turning to a review of available technologies for the analysis of morphological variation. These are considered in terms of underlying models and assumptions in order to clarify when each is appropriate. To illustrate the application of these methods, 3 example studies are presented. The first examines differences amongst ancient and modern adult human crania using 2-dimensional data. The second illustrates the extension of these methods into 3 dimensions in a study of facial growth in monkeys. The third presents an application to the analysis of the form of the hominoid talus. The review ends with an account of available software resources for shape analysis.
Keywords: Geometric morphometrics, shape analysis, facial variation, talus, sexual dimorphism
Full Text
The Full Text of this article is available as a PDF (499.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bookstein F. L. A statistical method for biological shape comparisons. J Theor Biol. 1984 Apr 7;107(3):475–520. doi: 10.1016/s0022-5193(84)80104-6. [DOI] [PubMed] [Google Scholar]
- Cheverud J., Lewis J. L., Bachrach W., Lew W. D. The measurement of form and variation in form: an application of three-dimensional quantitative morphology by finite-element methods. Am J Phys Anthropol. 1983 Oct;62(2):151–165. doi: 10.1002/ajpa.1330620205. [DOI] [PubMed] [Google Scholar]
- Clarke R. J., Tobias P. V. Sterkfontein member 2 foot bones of the oldest South African hominid. Science. 1995 Jul 28;269(5223):521–524. doi: 10.1126/science.7624772. [DOI] [PubMed] [Google Scholar]
- Lele S., Richtsmeier J. T. Euclidean distance matrix analysis: a coordinate-free approach for comparing biological shapes using landmark data. Am J Phys Anthropol. 1991 Nov;86(3):415–427. doi: 10.1002/ajpa.1330860307. [DOI] [PubMed] [Google Scholar]
- Lele S. Some comments on coordinate-free and scale-invariant methods in morphometrics. Am J Phys Anthropol. 1991 Aug;85(4):407–417. doi: 10.1002/ajpa.1330850405. [DOI] [PubMed] [Google Scholar]
- Lewis J. L., Lew W. D., Zimmerman J. R. A nonhomogeneous anthropometric scaling method based on finite element principles. J Biomech. 1980;13(10):815–824. doi: 10.1016/0021-9290(80)90169-4. [DOI] [PubMed] [Google Scholar]
- Lewis O. J. The joints of the evolving foot. Part I. The ankle joint. J Anat. 1980 May;130(Pt 3):527–543. [PMC free article] [PubMed] [Google Scholar]
- Lieberman D. E. Sphenoid shortening and the evolution of modern human cranial shape. Nature. 1998 May 14;393(6681):158–162. doi: 10.1038/30227. [DOI] [PubMed] [Google Scholar]
- Lisowski F. P. Angular growth changes and comparisons in the primate talus. Folia Primatol (Basel) 1967;7(2):81–97. doi: 10.1159/000155111. [DOI] [PubMed] [Google Scholar]
- MOSS M. L., YOUNG R. W. A functional approach to craniology. Am J Phys Anthropol. 1960 Dec;18:281–292. doi: 10.1002/ajpa.1330180406. [DOI] [PubMed] [Google Scholar]
- O'Higgins P., Bromage T. G., Johnson D. R., Moore W. J., McPhie P. A study of facial growth in the sooty mangabey Cercocebus atys. Folia Primatol (Basel) 1991;56(2):86–94. doi: 10.1159/000156532. [DOI] [PubMed] [Google Scholar]
- O'Higgins P. Developments in cranial morphometrics. Folia Primatol (Basel) 1989;53(1-4):101–124. doi: 10.1159/000156411. [DOI] [PubMed] [Google Scholar]
- O'Higgins P., Johnson D. R., Moore W. J., Flinn R. M. The variability of patterns of sexual dimorphism in the hominoid skull. Experientia. 1990 Jul 15;46(7):670–672. doi: 10.1007/BF01939929. [DOI] [PubMed] [Google Scholar]
- O'Higgins P., Jones N. Facial growth in Cercocebus torquatus: an application of three-dimensional geometric morphometric techniques to the study of morphological variation. J Anat. 1998 Aug;193(Pt 2):251–272. doi: 10.1046/j.1469-7580.1998.19320251.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oxnard C. E. Some African fossil foot bones: a note on the interpolation of fossils into a matrix of extant species. Am J Phys Anthropol. 1972 Jul;37(1):3–18. doi: 10.1002/ajpa.1330370103. [DOI] [PubMed] [Google Scholar]
- Rao C. R., Suryawanshi S. Statistical analysis of shape of objects based on landmark data. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12132–12136. doi: 10.1073/pnas.93.22.12132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rao C. R., Suryawanshi S. Statistical analysis of shape through triangulation of landmarks: A study of sexual dimorphism in hominids. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4121–4125. doi: 10.1073/pnas.95.8.4121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richtsmeier J. T. Applications of finite-element scaling analysis in primatology. Folia Primatol (Basel) 1989;53(1-4):50–64. doi: 10.1159/000156408. [DOI] [PubMed] [Google Scholar]
- Siegel A. F., Benson R. H. A robust comparison of biological shapes. Biometrics. 1982 Jun;38(2):341–350. [PubMed] [Google Scholar]
- Spoor F., O'Higgins P., Dean C., Lieberman D. E. Anterior sphenoid in modern humans. Nature. 1999 Feb 18;397(6720):572–572. doi: 10.1038/17505. [DOI] [PubMed] [Google Scholar]
- Van Valen L. M. Homology and causes. J Morphol. 1982 Sep;173(3):305–312. doi: 10.1002/jmor.1051730307. [DOI] [PubMed] [Google Scholar]