Abstract
The lacrimal sac and nasolacrimal duct are surrounded by a wide cavernous system of veins and arteries comparable to a cavernous body. The present study aimed to demonstrate the ultrastructure of the nervous tissue and the localisation of neuropeptides involved in the innervation of the cavernous body, a topic not previously investigated. Different S-100 protein antisera, neuronal markers (neuron-specific enolase, anti-200 kDa neurofilament), neuropeptides (substance P, neuropeptide Y, calcitonin gene-related peptide, vasoactive intestinal polypeptide) and the neuronal enzyme tyrosine hydroxylase were used to demonstrate the distribution pattern of the nervous tissue. The ultrastructure of the innervating nerve fibres was also examined by means of standard transmission electron microscopy.
The cavernous body contained specialised arteries and veins known as barrier arteries, capacitance veins, and throttle veins. Perivascularly, the tissue was rich in myelinated and unmyelinated nerve fibres in a plexus-like network. Small seromucous glands found in the region of the fundus of the lacrimal sac were contacted by nerve fibres forming a plexus around their alveoli. Many nerve fibres were positive for S-100 protein (S 100), neuron-specific enolase (NSE), anti-200 kDa neurofilament (RT 97), calcitonin gene-related peptide (CGRP), substance P (SP), tyrosine hydroxylase (TH), and neuropeptide Y (NPY). Vasoactive intestinal polypeptide (VIP) immunoreactivity was only demonstrated adjacent to the seromucous glands.
Both the density of nerve fibres as well as the presence of various neuropeptides emphasises the neural control of the cavernous body of the human efferent tear ducts. By means of this innervation, the specialised blood vessels permit regulation of blood flow by opening and closing the lumen of the lacrimal passage as effected by the engorgement and subsidence of the cavernous body, at the same time regulating tear outflow. Related functions such as a role in the occurrence of epiphora related to emotional responses are relevant. Moreover, malfunction in the innervation of the cavernous body may lead to disturbances in the tear outflow cycle, ocular congestion or total occlusion of the lacrimal passages.
Keywords: Lacrimal sac, nasolacrimal duct, tears, epiphora, neuropeptides
Full Text
The Full Text of this article is available as a PDF (834.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderton B. H., Breinburg D., Downes M. J., Green P. J., Tomlinson B. E., Ulrich J., Wood J. N., Kahn J. Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants. Nature. 1982 Jul 1;298(5869):84–86. doi: 10.1038/298084a0. [DOI] [PubMed] [Google Scholar]
- Becker B. B. Tricompartment model of the lacrimal pump mechanism. Ophthalmology. 1992 Jul;99(7):1139–1145. doi: 10.1016/s0161-6420(92)31839-1. [DOI] [PubMed] [Google Scholar]
- Butler J. M., Ruskell G. L., Cole D. F., Unger W. G., Zhang S. Q., Blank M. A., McGregor G. P., Bloom S. R. Effects of VIIth (facial) nerve degeneration on vasoactive intestinal polypeptide and substance P levels in ocular and orbital tissues of the rabbit. Exp Eye Res. 1984 Oct;39(4):523–532. doi: 10.1016/0014-4835(84)90052-6. [DOI] [PubMed] [Google Scholar]
- Cauna N., Cauna D. The fine structure and innervation of the cushion veins of the human nasal respiratory mucosa. Anat Rec. 1975 Jan;181(1):1–16. doi: 10.1002/ar.1091810102. [DOI] [PubMed] [Google Scholar]
- Cauna N. Electron microscopy of the nasal vascular bed and its nerve supply. Ann Otol Rhinol Laryngol. 1970 Jun;79(3):443–450. doi: 10.1177/000348947007900303. [DOI] [PubMed] [Google Scholar]
- Cauna N. The fine structure of the arteriovenous anastomosis and its nerve supply in the human nasal respiratory mucosa. Anat Rec. 1970 Sep;168(1):9–21. doi: 10.1002/ar.1091680102. [DOI] [PubMed] [Google Scholar]
- Cripps M. M., Bennett D. J. Proenkephalin A derivatives in lacrimal gland: occurrence and regulation of lacrimal function. Exp Eye Res. 1992 Jun;54(6):829–834. doi: 10.1016/0014-4835(92)90145-i. [DOI] [PubMed] [Google Scholar]
- Cripps M. M., Patchen-Moor K. Inhibition of stimulated lacrimal secretion by [D-Ala2]Met-enkephalinamide. Am J Physiol. 1989 Jul;257(1 Pt 1):G151–G156. doi: 10.1152/ajpgi.1989.257.1.G151. [DOI] [PubMed] [Google Scholar]
- Dartt D. A. Signal transduction and control of lacrimal gland protein secretion: a review. Curr Eye Res. 1989 Jun;8(6):619–636. doi: 10.3109/02713688908995762. [DOI] [PubMed] [Google Scholar]
- Fahrenkrug J. Transmitter role of vasoactive intestinal peptide. Pharmacol Toxicol. 1993 Jun;72(6):354–363. doi: 10.1111/j.1600-0773.1993.tb01344.x. [DOI] [PubMed] [Google Scholar]
- Fujita T. Concept of paraneurons. Arch Histol Jpn. 1977;40 (Suppl):1–12. doi: 10.1679/aohc1950.40.supplement_1. [DOI] [PubMed] [Google Scholar]
- Haimoto H., Hosoda S., Kato K. Differential distribution of immunoreactive S100-alpha and S100-beta proteins in normal nonnervous human tissues. Lab Invest. 1987 Nov;57(5):489–498. [PubMed] [Google Scholar]
- Hill J. C., Bethell W., Smirmaul H. J. Lacrimal drainage--a dynamic evaluation. Part I--mechanics of tear transport. Can J Ophthalmol. 1974 Oct;9(4):411–416. [PubMed] [Google Scholar]
- JONES L. T. An anatomical approach to problems of the eyelids and lacrimal apparatus. Arch Ophthalmol. 1961 Jul;66:111–124. doi: 10.1001/archopht.1961.00960010113025. [DOI] [PubMed] [Google Scholar]
- Johansson O., Lundberg J. M. Ultrastructural localization of VIP-like immunoreactivity in large dense-core vesicles of 'cholinergic-type' nerve terminals in cat exocrine glands. Neuroscience. 1981;6(5):847–862. doi: 10.1016/0306-4522(81)90167-6. [DOI] [PubMed] [Google Scholar]
- Kahn J., Anderton B. H., Miller C. C., Wood J. N., Esiri M. M. Staining with monoclonal antibodies to neurofilaments distinguishes between subpopulations of neurofibrillary tangles, between groups of axons and between groups of dendrites. J Neurol. 1987 May;234(4):241–246. doi: 10.1007/BF00618257. [DOI] [PubMed] [Google Scholar]
- Kelleher R. S., Hann L. E., Edwards J. A., Sullivan D. A. Endocrine, neural, and immune control of secretory component output by lacrimal gland acinar cells. J Immunol. 1991 May 15;146(10):3405–3412. [PubMed] [Google Scholar]
- Knipping S., Riederer A., Fischer A. Immunhistochemische Untersuchungen zur Neuroanatomie der menschlichen Nasenmuschel: Innervationsmuster der seromukösen Drüsen. Laryngorhinootologie. 1995 Feb;74(2):81–84. doi: 10.1055/s-2007-997694. [DOI] [PubMed] [Google Scholar]
- Lundberg J. M., Anggård A., Fahrenkrug J., Hökfelt T., Mutt V. Vasoactive intestinal polypeptide in cholinergic neurons of exocrine glands: functional significance of coexisting transmitters for vasodilation and secretion. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1651–1655. doi: 10.1073/pnas.77.3.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundberg J. M., Terenius L., Hökfelt T., Martling C. R., Tatemoto K., Mutt V., Polak J., Bloom S., Goldstein M. Neuropeptide Y (NPY)-like immunoreactivity in peripheral noradrenergic neurons and effects of NPY on sympathetic function. Acta Physiol Scand. 1982 Dec;116(4):477–480. doi: 10.1111/j.1748-1716.1982.tb07171.x. [DOI] [PubMed] [Google Scholar]
- Matsumoto Y., Tanabe T., Ueda S., Kawata M. Immunohistochemical and enzymehistochemical studies of peptidergic, aminergic and cholinergic innervation of the lacrimal gland of the monkey (Macaca fuscata). J Auton Nerv Syst. 1992 Mar;37(3):207–214. doi: 10.1016/0165-1838(92)90042-f. [DOI] [PubMed] [Google Scholar]
- Paulsen F., Thale A., Kohla G., Schauer R., Rochels R., Parwaresch R., Tillmann B. Functional anatomy of human lacrimal duct epithelium. Anat Embryol (Berl) 1998 Jul;198(1):1–12. doi: 10.1007/s004290050160. [DOI] [PubMed] [Google Scholar]
- Riederer A., Grevers G., Welsch U., Herzmann S. Elektronenmikroskopische Untersuchungen zur Gefässinnervation der Nasenschleimhaut des Menschen. Laryngorhinootologie. 1997 Jul;76(7):405–410. doi: 10.1055/s-2007-997452. [DOI] [PubMed] [Google Scholar]
- Robinson S. E., Schwartz J. P., Costa E. Substance P in the superior cervical ganglion and the submaxillary gland of the rat. Brain Res. 1980 Jan 20;182(1):11–17. doi: 10.1016/0006-8993(80)90826-4. [DOI] [PubMed] [Google Scholar]
- Rudich L., Butcher F. R. Effect of substance P and eledoisin on K+ efflux, amylase release and cyclic nucleotide levels in slices of rat parotid gland. Biochim Biophys Acta. 1976 Oct 22;444(3):704–711. doi: 10.1016/0304-4165(76)90317-2. [DOI] [PubMed] [Google Scholar]
- Schmechel D., Marangos P. J., Brightman M. Neurone-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature. 1978 Dec 21;276(5690):834–836. doi: 10.1038/276834a0. [DOI] [PubMed] [Google Scholar]
- Seifert P., Spitznas M. Demonstration of nerve fibers in human accessory lacrimal glands. Graefes Arch Clin Exp Ophthalmol. 1994 Feb;232(2):107–114. doi: 10.1007/BF00171672. [DOI] [PubMed] [Google Scholar]
- Seifert P., Spitznas M. Immunocytochemical and ultrastructural evaluation of the distribution of nervous tissue and neuropeptides in the meibomian gland. Graefes Arch Clin Exp Ophthalmol. 1996 Oct;234(10):648–656. doi: 10.1007/BF00185300. [DOI] [PubMed] [Google Scholar]
- Seifert P., Spitznas M., Koch F., Cusumano A. The architecture of human accessory lacrimal glands. Ger J Ophthalmol. 1993 Nov;2(6):444–454. [PubMed] [Google Scholar]
- Seifert P., Stuppi S., Spitznas M. Distribution pattern of nervous tissue and peptidergic nerve fibers in accessory lacrimal glands. Curr Eye Res. 1997 Apr;16(4):298–302. doi: 10.1076/ceyr.16.4.298.10698. [DOI] [PubMed] [Google Scholar]
- Seifert P., Stuppi S., Spitznas M., Weihe E. Differential distribution of neuronal markers and neuropeptides in the human lacrimal gland. Graefes Arch Clin Exp Ophthalmol. 1996 Apr;234(4):232–240. doi: 10.1007/BF00430415. [DOI] [PubMed] [Google Scholar]
- Sibony P. A., Walcott B., McKeon C., Jakobiec F. A. Vasoactive intestinal polypeptide and the innervation of the human lacrimal gland. Arch Ophthalmol. 1988 Aug;106(8):1085–1088. doi: 10.1001/archopht.1988.01060140241033. [DOI] [PubMed] [Google Scholar]
- Singh J., Adeghate E., Burrows S., Howarth F. C., Donath T. Protein secretion and the identification of neurotransmitters in the isolated pig lacrimal gland. Adv Exp Med Biol. 1994;350:57–60. doi: 10.1007/978-1-4615-2417-5_10. [DOI] [PubMed] [Google Scholar]
- TSUDA K. On the histology of ductulus lacrimalis in adult, especially on its innervation. Tohoku J Exp Med. 1952 Aug 25;56(3):233–243. doi: 10.1620/tjem.56.233. [DOI] [PubMed] [Google Scholar]
- Tervo K., Tervo T., Eränkö L., Eränkö O., Valtonen S., Cuello A. C. Effect of sensory and sympathetic denervation on substance P immunoreactivity in nerve fibres of the rabbit eye. Exp Eye Res. 1982 Apr;34(4):577–585. doi: 10.1016/0014-4835(82)90031-8. [DOI] [PubMed] [Google Scholar]
- Thale A., Paulsen F., Rochels R., Tillmann B. Functional anatomy of the human efferent tear ducts: a new theory of tear outflow mechanism. Graefes Arch Clin Exp Ophthalmol. 1998 Sep;236(9):674–678. doi: 10.1007/s004170050140. [DOI] [PubMed] [Google Scholar]
- Wilson G., Merrill R. The lacrimal drainage system: pressure changes in the canaliculus. Am J Optom Physiol Opt. 1976 Feb;53(2):55–59. [PubMed] [Google Scholar]
- Wood J. N., Anderton B. H. Monoclonal antibodies to mammalian neurofilaments. Biosci Rep. 1981 Mar;1(3):263–268. doi: 10.1007/BF01114913. [DOI] [PubMed] [Google Scholar]