Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2000 Aug;197(Pt 2):189–198. doi: 10.1046/j.1469-7580.2000.19720189.x

Differential expression of proteoglycan epitopes by ovine intervertebral disc cells

JAMES MELROSE 1,, SUSAN SMITH 1, PETER GHOSH 1
PMCID: PMC1468118  PMID: 11005711

Abstract

The alginate bead culture system has been utilised by several groups to examine the in vitro proteoglycan (PG) metabolism of chondrocytes and intervertebral disc cells, but the nature of the PGs produced has not been examined in detail. This is largely due to the difficulty of separating the anionically charged sodium alginate support matrix from PGs which are similarly charged. In the present study ovine annulus fibrosus, transitional zone and nucleus pulposus cells were dissociated enzymatically from their respective matrices by sequential digestion with pronase/clostridial collagenase and DNAase and then cultured in alginate beads for 10 d. The beads were solubilised and subjected to DEAE Sepharose CL6B anion exchange chromatography to separate the sodium alginate bead support matrix material quantitatively from the disc cell PGs. The alginate free bead PGs were then subjected to composite agarose polyacrylamide gel electrophoresis to resolve PG populations and the PGs were transferred to nitrocellulose membranes by semidry electroblotting. The PGs were identified by probing the blots with a panel of antibodies to defined PG core protein and glycosaminoglycan side chain epitopes. Alginate beads of disc cells were also embedded in paraffin wax and 4μm sections cut to immunolocalise decorin, biglycan, versican, and the 7-D-4 PG epitope within the beads. Decorin and biglycan had similar distributions in the beads, being localised on the cell surface whereas versican and the 7-D-4 PG epitope were immunolocalised interterritoriarly. This study is the first to demonstrate that ovine disc cells synthesise versican in alginate bead culture. Furthermore the immunoblotting studies also showed that a proportion of the 7-D-4 PG epitope was colocalised with versican.

Keywords: Alginate beads, disc cells, versican, 7-D-4 epitope, biglycan/decorin

Full Text

The Full Text of this article is available as a PDF (490.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
  2. Bianco P., Fisher L. W., Young M. F., Termine J. D., Robey P. G. Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues. J Histochem Cytochem. 1990 Nov;38(11):1549–1563. doi: 10.1177/38.11.2212616. [DOI] [PubMed] [Google Scholar]
  3. Bosse A., Schwarz K., Vollmer E., Kresse H. Divergent and co-localization of the two small proteoglycans decorin and proteoglycan-100 in human skeletal tissues and tumors. J Histochem Cytochem. 1993 Jan;41(1):13–19. doi: 10.1177/41.1.8417108. [DOI] [PubMed] [Google Scholar]
  4. Brown D. C., Vogel K. G. Characteristics of the in vitro interaction of a small proteoglycan (PG II) of bovine tendon with type I collagen. Matrix. 1989;9(6):468–478. doi: 10.1016/s0934-8832(11)80016-8. [DOI] [PubMed] [Google Scholar]
  5. Byers S., van Rooden J. C., Foster B. K. Structural changes in the large proteoglycan, aggrecan, in different zones of the ovine growth plate. Calcif Tissue Int. 1997 Jan;60(1):71–78. doi: 10.1007/s002239900188. [DOI] [PubMed] [Google Scholar]
  6. Caterson B., Christner J. E., Baker J. R., Couchman J. R. Production and characterization of monoclonal antibodies directed against connective tissue proteoglycans. Fed Proc. 1985 Feb;44(2):386–393. [PubMed] [Google Scholar]
  7. Caterson B., Christner J. E., Baker J. R. Identification of a monoclonal antibody that specifically recognizes corneal and skeletal keratan sulfate. Monoclonal antibodies to cartilage proteoglycan. J Biol Chem. 1983 Jul 25;258(14):8848–8854. [PubMed] [Google Scholar]
  8. Caterson B., Hughes C. E., Roughley P., Mort J. S. Anabolic and catabolic markers of proteoglycan metabolism in osteoarthritis. Acta Orthop Scand Suppl. 1995 Oct;266:121–124. [PubMed] [Google Scholar]
  9. Chelberg M. K., Banks G. M., Geiger D. F., Oegema T. R., Jr Identification of heterogeneous cell populations in normal human intervertebral disc. J Anat. 1995 Feb;186(Pt 1):43–53. [PMC free article] [PubMed] [Google Scholar]
  10. Chiba K., Andersson G. B., Masuda K., Thonar E. J. Metabolism of the extracellular matrix formed by intervertebral disc cells cultured in alginate. Spine (Phila Pa 1976) 1997 Dec 15;22(24):2885–2893. doi: 10.1097/00007632-199712150-00011. [DOI] [PubMed] [Google Scholar]
  11. Farndale R. W., Buttle D. J., Barrett A. J. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986 Sep 4;883(2):173–177. doi: 10.1016/0304-4165(86)90306-5. [DOI] [PubMed] [Google Scholar]
  12. Fisher L. W., Stubbs J. T., 3rd, Young M. F. Antisera and cDNA probes to human and certain animal model bone matrix noncollagenous proteins. Acta Orthop Scand Suppl. 1995 Oct;266:61–65. [PubMed] [Google Scholar]
  13. Fisher L. W., Termine J. D., Young M. F. Deduced protein sequence of bone small proteoglycan I (biglycan) shows homology with proteoglycan II (decorin) and several nonconnective tissue proteins in a variety of species. J Biol Chem. 1989 Mar 15;264(8):4571–4576. [PubMed] [Google Scholar]
  14. Grandolfo M., D'Andrea P., Paoletti S., Martina M., Silvestrini G., Bonucci E., Vittur F. Culture and differentiation of chondrocytes entrapped in alginate gels. Calcif Tissue Int. 1993 Jan;52(1):42–48. doi: 10.1007/BF00675625. [DOI] [PubMed] [Google Scholar]
  15. Gregory K. E., Marsden M. E., Anderson-MacKenzie J., Bard J. B., Bruckner P., Farjanel J., Robins S. P., Hulmes D. J. Abnormal collagen assembly, though normal phenotype, in alginate bead cultures of chick embryo chondrocytes. Exp Cell Res. 1999 Jan 10;246(1):98–107. doi: 10.1006/excr.1998.4291. [DOI] [PubMed] [Google Scholar]
  16. Gruber H. E., Fisher E. C., Jr, Desai B., Stasky A. A., Hoelscher G., Hanley E. N., Jr Human intervertebral disc cells from the annulus: three-dimensional culture in agarose or alginate and responsiveness to TGF-beta1. Exp Cell Res. 1997 Aug 25;235(1):13–21. doi: 10.1006/excr.1997.3647. [DOI] [PubMed] [Google Scholar]
  17. Guo J. F., Jourdian G. W., MacCallum D. K. Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect Tissue Res. 1989;19(2-4):277–297. doi: 10.3109/03008208909043901. [DOI] [PubMed] [Google Scholar]
  18. Götz W., Barnert S., Bertagnoli R., Miosge N., Kresse H., Herken R. Immunohistochemical localization of the small proteoglycans decorin and biglycan in human intervertebral discs. Cell Tissue Res. 1997 Jul;289(1):185–190. doi: 10.1007/s004410050864. [DOI] [PubMed] [Google Scholar]
  19. Heinegård D., Björne-Persson A., Cöster L., Franzén A., Gardell S., Malmström A., Paulsson M., Sandfalk R., Vogel K. The core proteins of large and small interstitial proteoglycans from various connective tissues form distinct subgroups. Biochem J. 1985 Aug 15;230(1):181–194. doi: 10.1042/bj2300181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Häuselmann H. J., Aydelotte M. B., Schumacher B. L., Kuettner K. E., Gitelis S. H., Thonar E. J. Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. Matrix. 1992 Apr;12(2):116–129. doi: 10.1016/s0934-8832(11)80053-3. [DOI] [PubMed] [Google Scholar]
  21. Häuselmann H. J., Fernandes R. J., Mok S. S., Schmid T. M., Block J. A., Aydelotte M. B., Kuettner K. E., Thonar E. J. Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci. 1994 Jan;107(Pt 1):17–27. doi: 10.1242/jcs.107.1.17. [DOI] [PubMed] [Google Scholar]
  22. Inkinen R. I., Lammi M. J., Lehmonen S., Puustjärvi K., Käpä E., Tammi M. I. Relative increase of biglycan and decorin and altered chondroitin sulfate epitopes in the degenerating human intervertebral disc. J Rheumatol. 1998 Mar;25(3):506–514. [PubMed] [Google Scholar]
  23. Iozzo R. V. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem. 1998;67:609–652. doi: 10.1146/annurev.biochem.67.1.609. [DOI] [PubMed] [Google Scholar]
  24. Johnstone B., Bayliss M. T. The large proteoglycans of the human intervertebral disc. Changes in their biosynthesis and structure with age, topography, and pathology. Spine (Phila Pa 1976) 1995 Mar 15;20(6):674–684. doi: 10.1097/00007632-199503150-00008. [DOI] [PubMed] [Google Scholar]
  25. Johnstone B., Markopoulos M., Neame P., Caterson B. Identification and characterization of glycanated and non-glycanated forms of biglycan and decorin in the human intervertebral disc. Biochem J. 1993 Jun 15;292(Pt 3):661–666. doi: 10.1042/bj2920661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kim Y. J., Sah R. L., Doong J. Y., Grodzinsky A. J. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem. 1988 Oct;174(1):168–176. doi: 10.1016/0003-2697(88)90532-5. [DOI] [PubMed] [Google Scholar]
  27. Kosakai M., Yosizawa Z. A partial modification of the carbazole method of Bitter and Muir for quantitation of hexuronic acids. Anal Biochem. 1979 Mar;93(2):295–298. doi: 10.1016/s0003-2697(79)80154-2. [DOI] [PubMed] [Google Scholar]
  28. Maldonado B. A., Oegema T. R., Jr Initial characterization of the metabolism of intervertebral disc cells encapsulated in microspheres. J Orthop Res. 1992 Sep;10(5):677–690. doi: 10.1002/jor.1100100510. [DOI] [PubMed] [Google Scholar]
  29. Melrose J., Ghosh P., Taylor T. K., Latham J., Moore R. Topographical variation in the catabolism of aggrecan in an ovine annular lesion model of experimental disc degeneration. J Spinal Disord. 1997 Feb;10(1):55–67. [PubMed] [Google Scholar]
  30. Melrose J., Ghosh P., Taylor T. K. Proteoglycan heterogeneity in the normal adult ovine intervertebral disc. Matrix Biol. 1994 Jan;14(1):61–75. doi: 10.1016/0945-053x(94)90030-2. [DOI] [PubMed] [Google Scholar]
  31. Melrose J., Ghosh P., Taylor T. K., Vernon-Roberts B., Latham J., Moore R. Elevated synthesis of biglycan and decorin in an ovine annular lesion model of experimental disc degeneration. Eur Spine J. 1997;6(6):376–384. doi: 10.1007/BF01834063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Melrose J., Little C. B., Ghosh P. Detection of aggregatable proteoglycan populations by affinity blotting using biotinylated hyaluronan. Anal Biochem. 1998 Feb 15;256(2):149–157. doi: 10.1006/abio.1997.2509. [DOI] [PubMed] [Google Scholar]
  33. Melrose J., Whitelock J., Xu Q., Ghosh P. Pathogenesis of abdominal aortic aneurysms: possible role of differential production of proteoglycans by smooth muscle cells. J Vasc Surg. 1998 Oct;28(4):676–686. doi: 10.1016/s0741-5214(98)70094-1. [DOI] [PubMed] [Google Scholar]
  34. Rosenberg L. C., Choi H. U., Poole A. R., Lewandowska K., Culp L. A. Biological roles of dermatan sulphate proteoglycans. Ciba Found Symp. 1986;124:47–68. doi: 10.1002/9780470513385.ch4. [DOI] [PubMed] [Google Scholar]
  35. Schönherr E., Hausser H., Beavan L., Kresse H. Decorin-type I collagen interaction. Presence of separate core protein-binding domains. J Biol Chem. 1995 Apr 14;270(15):8877–8883. doi: 10.1074/jbc.270.15.8877. [DOI] [PubMed] [Google Scholar]
  36. Sobue M., Nakashima N., Fukatsu T., Nagasaka T., Katoh T., Ogura T., Takeuchi J. Production and characterization of monoclonal antibody to dermatan sulfate proteoglycan. J Histochem Cytochem. 1988 May;36(5):479–485. doi: 10.1177/36.5.3356894. [DOI] [PubMed] [Google Scholar]
  37. Sztrolovics R., Alini M., Mort J. S., Roughley P. J. Age-related changes in fibromodulin and lumican in human intervertebral discs. Spine (Phila Pa 1976) 1999 Sep 1;24(17):1765–1771. doi: 10.1097/00007632-199909010-00003. [DOI] [PubMed] [Google Scholar]
  38. Visco D. M., Johnstone B., Hill M. A., Jolly G. A., Caterson B. Immunohistochemical analysis of 3-B-(-) and 7-D-4 epitope expression in canine osteoarthritis. Arthritis Rheum. 1993 Dec;36(12):1718–1725. doi: 10.1002/art.1780361211. [DOI] [PubMed] [Google Scholar]
  39. Voss B., Glössl J., Cully Z., Kresse H. Immunocytochemical investigation on the distribution of small chondroitin sulfate-dermatan sulfate proteoglycan in the human. J Histochem Cytochem. 1986 Aug;34(8):1013–1019. doi: 10.1177/34.8.2426331. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES