Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jul 15;25(14):2773–2783. doi: 10.1093/nar/25.14.2773

DNA containing 4'-thio-2'-deoxycytidine inhibits methylation by HhaI methyltransferase.

S Kumar 1, J R Horton 1, G D Jones 1, R T Walker 1, R J Roberts 1, X Cheng 1
PMCID: PMC146812  PMID: 9207024

Abstract

4'-Thio-2'-deoxycytidine was synthesized as a 5'- protected phosphoramidite compatible with solid phase DNA synthesis. When incorporated as the target cytosine (C*) in the GC*GC recognition sequence for the DNA methyltransferase M. HhaI, methyl transfer was strongly inhibited. In contrast, these same oligonucleotides were normal substrates for the cognate restriction endonuclease R. HhaI and its isoschizomer R. Hin P1I. M. HhaI was able to bind both 4'-thio-modified DNA and unmodified DNA to equivalent extents under equilibrium conditions. However, the presence of 4'-thio-2'-deoxycytidine decreased the half-life of the complex by >10-fold. The crystal structure of a ternary complex of M. HhaI, AdoMet and DNA containing 4'-thio-2'-deoxycytidine was solved at 2.05 A resolution with a crystallographic R-factor of 0.186 and R-free of 0.231. The structure is not grossly different from previously solved ternary complexes containing M. HhaI, DNA and AdoHcy. The difference electron density suggests partial methylation at C5 of the flipped target 4'-thio-2'-deoxycytidine. The inhibitory effect of the 4'sulfur atom on enzymatic activity may be traced to perturbation of a step in the methylation reaction after DNA binding but prior to methyl transfer. This inhibitory effect can be partially overcome after a considerably long time in the crystal environment where the packing prevents complex dissociation and the target is accurately positioned within the active site.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker D. J., Kan J. L., Smith S. S. Recognition of structural perturbations in DNA by human DNA(cytosine-5)methyltransferase. Gene. 1988 Dec 25;74(1):207–210. doi: 10.1016/0378-1119(88)90288-0. [DOI] [PubMed] [Google Scholar]
  2. Barlow D. P. Gametic imprinting in mammals. Science. 1995 Dec 8;270(5242):1610–1613. doi: 10.1126/science.270.5242.1610. [DOI] [PubMed] [Google Scholar]
  3. Bestor T. H., Verdine G. L. DNA methyltransferases. Curr Opin Cell Biol. 1994 Jun;6(3):380–389. doi: 10.1016/0955-0674(94)90030-2. [DOI] [PubMed] [Google Scholar]
  4. Boggon T. J., Hancox E. L., McAuley-Hecht K. E., Connolly B. A., Hunter W. N., Brown T., Walker R. T., Leonard G. A. The crystal structure analysis of d(CGCGAASSCGCG)2, a synthetic DNA dodecamer duplex containing four 4'-thio-2'-deoxythymidine nucleotides. Nucleic Acids Res. 1996 Mar 1;24(5):951–961. doi: 10.1093/nar/24.5.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheng X., Blumenthal R. M. Finding a basis for flipping bases. Structure. 1996 Jun 15;4(6):639–645. doi: 10.1016/s0969-2126(96)00068-8. [DOI] [PubMed] [Google Scholar]
  6. Cheng X., Kumar S., Posfai J., Pflugrath J. W., Roberts R. J. Crystal structure of the HhaI DNA methyltransferase complexed with S-adenosyl-L-methionine. Cell. 1993 Jul 30;74(2):299–307. doi: 10.1016/0092-8674(93)90421-l. [DOI] [PubMed] [Google Scholar]
  7. Dubey A. K., Roberts R. J. Sequence-specific DNA binding by the MspI DNA methyltransferase. Nucleic Acids Res. 1992 Jun 25;20(12):3167–3173. doi: 10.1093/nar/20.12.3167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dyson M. R., Coe P. L., Walker R. T. The synthesis and antiviral activity of some 4'-thio-2'-deoxy nucleoside analogues. J Med Chem. 1991 Sep;34(9):2782–2786. doi: 10.1021/jm00113a016. [DOI] [PubMed] [Google Scholar]
  9. Gabbara S., Sheluho D., Bhagwat A. S. Cytosine methyltransferase from Escherichia coli in which active site cysteine is replaced with serine is partially active. Biochemistry. 1995 Jul 11;34(27):8914–8923. doi: 10.1021/bi00027a044. [DOI] [PubMed] [Google Scholar]
  10. Hancox E. L., Connolly B. A., Walker R. T. Synthesis and properties of oligodeoxynucleotides containing the analogue 2'-deoxy-4'-thiothymidine. Nucleic Acids Res. 1993 Jul 25;21(15):3485–3491. doi: 10.1093/nar/21.15.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hayatsu H. Reaction of cytidine with semicarbazide in the presence of bisulfite. A rapid modification specific for single-stranded polynucleotide. Biochemistry. 1976 Jun 15;15(12):2677–2682. doi: 10.1021/bi00657a030. [DOI] [PubMed] [Google Scholar]
  12. Jones G. D., Lesnik E. A., Owens S. R., Risen L. M., Walker R. T. Investigation of some properties of oligodeoxynucleotides containing 4'-thio-2'-deoxynucleotides: duplex hybridization and nuclease sensitivity. Nucleic Acids Res. 1996 Nov 1;24(21):4117–4122. doi: 10.1093/nar/24.21.4117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jordan F., Sostman H. D. Molecular orbital (CNDO/2 and MINDO) calculations on protonated deoxyribonucleic acid bases. The effects of base protonation on intermolecular interactions. J Am Chem Soc. 1973 Oct 3;95(20):6544–6554. doi: 10.1021/ja00801a004. [DOI] [PubMed] [Google Scholar]
  14. Klimasauskas S., Kumar S., Roberts R. J., Cheng X. HhaI methyltransferase flips its target base out of the DNA helix. Cell. 1994 Jan 28;76(2):357–369. doi: 10.1016/0092-8674(94)90342-5. [DOI] [PubMed] [Google Scholar]
  15. Klimasauskas S., Roberts R. J. M.HhaI binds tightly to substrates containing mismatches at the target base. Nucleic Acids Res. 1995 Apr 25;23(8):1388–1395. doi: 10.1093/nar/23.8.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kumar S., Cheng X., Klimasauskas S., Mi S., Posfai J., Roberts R. J., Wilson G. G. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 1994 Jan 11;22(1):1–10. doi: 10.1093/nar/22.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kumar S., Cheng X., Pflugrath J. W., Roberts R. J. Purification, crystallization, and preliminary X-ray diffraction analysis of an M.HhaI-AdoMet complex. Biochemistry. 1992 Sep 15;31(36):8648–8653. doi: 10.1021/bi00151a035. [DOI] [PubMed] [Google Scholar]
  18. Laird P. W., Jaenisch R. DNA methylation and cancer. Hum Mol Genet. 1994;3(Spec No):1487–1495. doi: 10.1093/hmg/3.suppl_1.1487. [DOI] [PubMed] [Google Scholar]
  19. Li E., Bestor T. H., Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992 Jun 12;69(6):915–926. doi: 10.1016/0092-8674(92)90611-f. [DOI] [PubMed] [Google Scholar]
  20. Liu L., Santi D. V. Mutation of asparagine 229 to aspartate in thymidylate synthase converts the enzyme to a deoxycytidylate methylase. Biochemistry. 1992 Jun 9;31(22):5100–5104. doi: 10.1021/bi00137a002. [DOI] [PubMed] [Google Scholar]
  21. Mi S., Roberts R. J. The DNA binding affinity of HhaI methylase is increased by a single amino acid substitution in the catalytic center. Nucleic Acids Res. 1993 May 25;21(10):2459–2464. doi: 10.1093/nar/21.10.2459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. O'Gara M., Klimasauskas S., Roberts R. J., Cheng X. Enzymatic C5-cytosine methylation of DNA: mechanistic implications of new crystal structures for HhaL methyltransferase-DNA-AdoHcy complexes. J Mol Biol. 1996 Sep 6;261(5):634–645. doi: 10.1006/jmbi.1996.0489. [DOI] [PubMed] [Google Scholar]
  23. O'Gara M., Roberts R. J., Cheng X. A structural basis for the preferential binding of hemimethylated DNA by HhaI DNA methyltransferase. J Mol Biol. 1996 Nov 8;263(4):597–606. doi: 10.1006/jmbi.1996.0601. [DOI] [PubMed] [Google Scholar]
  24. Osterman D. G., DePillis G. D., Wu J. C., Matsuda A., Santi D. V. 5-Fluorocytosine in DNA is a mechanism-based inhibitor of HhaI methylase. Biochemistry. 1988 Jul 12;27(14):5204–5210. doi: 10.1021/bi00414a039. [DOI] [PubMed] [Google Scholar]
  25. Pósfai J., Bhagwat A. S., Pósfai G., Roberts R. J. Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res. 1989 Apr 11;17(7):2421–2435. doi: 10.1093/nar/17.7.2421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rahim S. G., Trivedi N., Bogunovic-Batchelor M. V., Hardy G. W., Mills G., Selway J. W., Snowden W., Littler E., Coe P. L., Basnak I. Synthesis and anti-herpes virus activity of 2'-deoxy-4'-thiopyrimidine nucleosides. J Med Chem. 1996 Feb 2;39(3):789–795. doi: 10.1021/jm950029r. [DOI] [PubMed] [Google Scholar]
  27. Reinisch K. M., Chen L., Verdine G. L., Lipscomb W. N. The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell. 1995 Jul 14;82(1):143–153. doi: 10.1016/0092-8674(95)90060-8. [DOI] [PubMed] [Google Scholar]
  28. Rideout W. M., 3rd, Coetzee G. A., Olumi A. F., Jones P. A. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science. 1990 Sep 14;249(4974):1288–1290. doi: 10.1126/science.1697983. [DOI] [PubMed] [Google Scholar]
  29. Roberts R. J. On base flipping. Cell. 1995 Jul 14;82(1):9–12. doi: 10.1016/0092-8674(95)90046-2. [DOI] [PubMed] [Google Scholar]
  30. Secrist J. A., 3rd, Tiwari K. N., Riordan J. M., Montgomery J. A. Synthesis and biological activity of 2'-deoxy-4'-thio pyrimidine nucleosides. J Med Chem. 1991 Aug;34(8):2361–2366. doi: 10.1021/jm00112a007. [DOI] [PubMed] [Google Scholar]
  31. Slupphaug G., Mol C. D., Kavli B., Arvai A. S., Krokan H. E., Tainer J. A. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature. 1996 Nov 7;384(6604):87–92. doi: 10.1038/384087a0. [DOI] [PubMed] [Google Scholar]
  32. Van Draanen N. A., Freeman G. A., Short S. A., Harvey R., Jansen R., Szczech G., Koszalka G. W. Synthesis and antiviral activity of 2'-deoxy-4'-thio purine nucleosides. J Med Chem. 1996 Jan 19;39(2):538–542. doi: 10.1021/jm950701k. [DOI] [PubMed] [Google Scholar]
  33. Vassylyev D. G., Kashiwagi T., Mikami Y., Ariyoshi M., Iwai S., Ohtsuka E., Morikawa K. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell. 1995 Dec 1;83(5):773–782. doi: 10.1016/0092-8674(95)90190-6. [DOI] [PubMed] [Google Scholar]
  34. Wu J. C., Santi D. V. Kinetic and catalytic mechanism of HhaI methyltransferase. J Biol Chem. 1987 Apr 5;262(10):4778–4786. [PubMed] [Google Scholar]
  35. Wyszynski M. W., Gabbara S., Kubareva E. A., Romanova E. A., Oretskaya T. S., Gromova E. S., Shabarova Z. A., Bhagwat A. S. The cysteine conserved among DNA cytosine methylases is required for methyl transfer, but not for specific DNA binding. Nucleic Acids Res. 1993 Jan 25;21(2):295–301. doi: 10.1093/nar/21.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yang A. S., Shen J. C., Zingg J. M., Mi S., Jones P. A. HhaI and HpaII DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair. Nucleic Acids Res. 1995 Apr 25;23(8):1380–1387. doi: 10.1093/nar/23.8.1380. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES