Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jul 15;25(14):2854–2860. doi: 10.1093/nar/25.14.2854

Plant ribosome shunting in vitro.

W Schmidt-Puchta 1, D Dominguez 1, D Lewetag 1, T Hohn 1
PMCID: PMC146814  PMID: 9207035

Abstract

It has been proposed that cauliflower mosaic virus 35S RNA with its 600 nt long leader uses an unusual translation process (the translational shunt). A wheat germ in vitro translation assay was used to improve the study of this mechanism. Deletions, the introduction of stable stem-loop structures, and the inhibitory effect of antisense oligonucleotides on gene expression were used to determine the roles of various parts of the leader. It was found that the 5'- and 3'-ends of the leader are absolutely required for translation whereas the middle part is apparently dispensable. These results confirm the data already reported from transient expression experiments with protoplasts. However, the in vitro data suggest in contrast to protoplast experiments that only two relatively short regions at both ends, approximately 100 nt each, are required. The in vitro system provides tools for further studying the shunt model at the molecular level and for examining the involvement of proteins in this mechanism. Shunting was also found to occur with the rice tungro bacilliform virus leader. As wheat is neither a host plant of cauliflower mosaic virus nor rice tungro bacilliform virus, the shunt seems to be host independent, a finding that deviates from earlier studies in protoplasts.

Full Text

The Full Text of this article is available as a PDF (345.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baughman G., Howell S. H. Cauliflower mosaic virus 35 S RNA leader region inhibits translation of downstream genes. Virology. 1988 Nov;167(1):125–135. doi: 10.1016/0042-6822(88)90061-x. [DOI] [PubMed] [Google Scholar]
  2. Bonneville J. M., Sanfaçon H., Fütterer J., Hohn T. Posttranscriptional trans-activation in cauliflower mosaic virus. Cell. 1989 Dec 22;59(6):1135–1143. doi: 10.1016/0092-8674(89)90769-1. [DOI] [PubMed] [Google Scholar]
  3. Chen G., Müller M., Potrykus I., Hohn T., Fütterer J. Rice tungro bacilliform virus: transcription and translation in protoplasts. Virology. 1994 Oct;204(1):91–100. doi: 10.1006/viro.1994.1513. [DOI] [PubMed] [Google Scholar]
  4. Chen G., Rothnie H. M., He X., Hohn T., Fütterer J. Efficient transcription from the rice tungro bacilliform virus promoter requires elements downstream of the transcription start site. J Virol. 1996 Dec;70(12):8411–8421. doi: 10.1128/jvi.70.12.8411-8421.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Curran J., Kolakofsky D. Scanning independent ribosomal initiation of the Sendai virus X protein. EMBO J. 1988 Sep;7(9):2869–2874. doi: 10.1002/j.1460-2075.1988.tb03143.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curran J., Kolakofsky D. Scanning independent ribosomal initiation of the Sendai virus Y proteins in vitro and in vivo. EMBO J. 1989 Feb;8(2):521–526. doi: 10.1002/j.1460-2075.1989.tb03406.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dominguez D. I., Hohn T., Schmidt-Puchta W. Cellular proteins bind to multiple sites of the leader region of cauliflower mosaic virus 35S RNA. Virology. 1996 Dec 15;226(2):374–383. doi: 10.1006/viro.1996.0665. [DOI] [PubMed] [Google Scholar]
  8. Fütterer J., Gordon K., Bonneville J. M., Sanfaçon H., Pisan B., Penswick J., Hohn T. The leading sequence of caulimovirus large RNA can be folded into a large stem-loop structure. Nucleic Acids Res. 1988 Sep 12;16(17):8377–8390. doi: 10.1093/nar/16.17.8377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fütterer J., Gordon K., Pfeiffer P., Sanfaçon H., Pisan B., Bonneville J. M., Hohn T. Differential inhibition of downstream gene expression by the cauliflower mosaic virus 35S RNA leader. Virus Genes. 1989 Sep;3(1):45–55. doi: 10.1007/BF00301986. [DOI] [PubMed] [Google Scholar]
  10. Fütterer J., Gordon K., Sanfaçon H., Bonneville J. M., Hohn T. Positive and negative control of translation by the leader sequence of cauliflower mosaic virus pregenomic 35S RNA. EMBO J. 1990 Jun;9(6):1697–1707. doi: 10.1002/j.1460-2075.1990.tb08293.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fütterer J., Hohn T. Translation of a polycistronic mRNA in the presence of the cauliflower mosaic virus transactivator protein. EMBO J. 1991 Dec;10(12):3887–3896. doi: 10.1002/j.1460-2075.1991.tb04958.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fütterer J., Kiss-László Z., Hohn T. Nonlinear ribosome migration on cauliflower mosaic virus 35S RNA. Cell. 1993 May 21;73(4):789–802. doi: 10.1016/0092-8674(93)90257-q. [DOI] [PubMed] [Google Scholar]
  13. Fütterer J., Potrykus I., Bao Y., Li L., Burns T. M., Hull R., Hohn T. Position-dependent ATT initiation during plant pararetrovirus rice tungro bacilliform virus translation. J Virol. 1996 May;70(5):2999–3010. doi: 10.1128/jvi.70.5.2999-3010.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fütterer J., Potrykus I., Valles Brau M. P., Dasgupta I., Hull R., Hohn T. Splicing in a plant pararetrovirus. Virology. 1994 Feb;198(2):663–670. doi: 10.1006/viro.1994.1078. [DOI] [PubMed] [Google Scholar]
  15. Görlich D., Mattaj I. W. Nucleocytoplasmic transport. Science. 1996 Mar 15;271(5255):1513–1518. doi: 10.1126/science.271.5255.1513. [DOI] [PubMed] [Google Scholar]
  16. Hay J. M., Jones M. C., Blakebrough M. L., Dasgupta I., Davies J. W., Hull R. An analysis of the sequence of an infectious clone of rice tungro bacilliform virus, a plant pararetrovirus. Nucleic Acids Res. 1991 May 25;19(10):2615–2621. doi: 10.1093/nar/19.10.2615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hemmings-Mieszczak M., Steger G., Hohn T. Alternative structures of the cauliflower mosaic virus 35 S RNA leader: implications for viral expression and replication. J Mol Biol. 1997 Apr 18;267(5):1075–1088. doi: 10.1006/jmbi.1997.0929. [DOI] [PubMed] [Google Scholar]
  18. Hohn T., Corsten S., Rieke S., Müller M., Rothnie H. Methylation of coding region alone inhibits gene expression in plant protoplasts. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8334–8339. doi: 10.1073/pnas.93.16.8334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kiss-László Z., Blanc S., Hohn T. Splicing of cauliflower mosaic virus 35S RNA is essential for viral infectivity. EMBO J. 1995 Jul 17;14(14):3552–3562. doi: 10.1002/j.1460-2075.1995.tb07361.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kozak M. Regulation of translation in eukaryotic systems. Annu Rev Cell Biol. 1992;8:197–225. doi: 10.1146/annurev.cb.08.110192.001213. [DOI] [PubMed] [Google Scholar]
  21. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liebhaber S. A., Cash F. E., Shakin S. H. Translationally associated helix-destabilizing activity in rabbit reticulocyte lysate. J Biol Chem. 1984 Dec 25;259(24):15597–15602. [PubMed] [Google Scholar]
  23. Rothnie H. M., Reid J., Hohn T. The contribution of AAUAAA and the upstream element UUUGUA to the efficiency of mRNA 3'-end formation in plants. EMBO J. 1994 May 1;13(9):2200–2210. doi: 10.1002/j.1460-2075.1994.tb06497.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sanfaçon H., Brodmann P., Hohn T. A dissection of the cauliflower mosaic virus polyadenylation signal. Genes Dev. 1991 Jan;5(1):141–149. doi: 10.1101/gad.5.1.141. [DOI] [PubMed] [Google Scholar]
  25. Sanfaçon H., Hohn T. Proximity to the promoter inhibits recognition of cauliflower mosaic virus polyadenylation signal. Nature. 1990 Jul 5;346(6279):81–84. doi: 10.1038/346081a0. [DOI] [PubMed] [Google Scholar]
  26. Scholthof H. B., Gowda S., Wu F. C., Shepherd R. J. The full-length transcript of a caulimovirus is a polycistronic mRNA whose genes are trans activated by the product of gene VI. J Virol. 1992 May;66(5):3131–3139. doi: 10.1128/jvi.66.5.3131-3139.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Simpson G. G., Clark G. P., Rothnie H. M., Boelens W., van Venrooij W., Brown J. W. Molecular characterization of the spliceosomal proteins U1A and U2B" from higher plants. EMBO J. 1995 Sep 15;14(18):4540–4550. doi: 10.1002/j.1460-2075.1995.tb00133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sonenberg N. Picornavirus RNA translation continues to surprise. Trends Genet. 1991 Apr;7(4):105–106. doi: 10.1016/0168-9525(91)90440-2. [DOI] [PubMed] [Google Scholar]
  29. Wakita T., Wands J. R. Specific inhibition of hepatitis C virus expression by antisense oligodeoxynucleotides. In vitro model for selection of target sequence. J Biol Chem. 1994 May 13;269(19):14205–14210. [PubMed] [Google Scholar]
  30. Yueh A., Schneider R. J. Selective translation initiation by ribosome jumping in adenovirus-infected and heat-shocked cells. Genes Dev. 1996 Jun 15;10(12):1557–1567. doi: 10.1101/gad.10.12.1557. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES