Abstract
Approximately 30% of human and mammalian populations develop cognitive impairments with ageing. Many of these impairments have been linked to dysfunction of the hippocampus, a well studied area of the medial-temporal lobe, which is involved in episodic memory and control of the hypothalamo-pituitary-adrenal stress axis and, thus, of glucocorticoid secretion. This paper reviews the growing body of studies which explore a possible relationship between lifetime exposure to glucocorticoids and hippocampal impairment. There is now strong evidence which associates hypercortisolemia in aged men with later cognitive dysfunction and this complements a wealth of rodent and other human data. We conclude with a discussion of possible pharmacological and behavioural interventions.
Keywords: Hippocampal dysfunction, exposure to glucocorticoids
Full Text
The Full Text of this article is available as a PDF (376.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bear M. F. Homosynaptic long-term depression: a mechanism for memory? Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9457–9458. doi: 10.1073/pnas.96.17.9457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beato M., Chávez S., Truss M. Transcriptional regulation by steroid hormones. Steroids. 1996 Apr;61(4):240–251. doi: 10.1016/0039-128x(96)00030-x. [DOI] [PubMed] [Google Scholar]
- Bye N., Nichols N. R. Adrenalectomy-induced apoptosis and glial responsiveness during ageing. Neuroreport. 1998 Apr 20;9(6):1179–1184. doi: 10.1097/00001756-199804200-00040. [DOI] [PubMed] [Google Scholar]
- Calzà L., Pozza M., Coraddu F., Farci G., Giardino L. Hormonal influences on brain ageing quality: focus on corticotropin releasing hormone-, vasopressin- and oxytocin-immunoreactive neurones in the human brain. J Neural Transm (Vienna) 1997;104(10):1095–1100. doi: 10.1007/BF01273321. [DOI] [PubMed] [Google Scholar]
- Chard P. S., Jordán J., Marcuccilli C. J., Miller R. J., Leiden J. M., Roos R. P., Ghadge G. D. Regulation of excitatory transmission at hippocampal synapses by calbindin D28k. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5144–5148. doi: 10.1073/pnas.92.11.5144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi D. W. Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci. 1995 Feb;18(2):58–60. [PubMed] [Google Scholar]
- Conrad C. D., Lupien S. J., McEwen B. S. Support for a bimodal role for type II adrenal steroid receptors in spatial memory. Neurobiol Learn Mem. 1999 Jul;72(1):39–46. doi: 10.1006/nlme.1998.3898. [DOI] [PubMed] [Google Scholar]
- Conrad C. D., Lupien S. J., Thanasoulis L. C., McEwen B. S. The effects of type I and type II corticosteroid receptor agonists on exploratory behavior and spatial memory in the Y-maze. Brain Res. 1997 Jun 6;759(1):76–83. doi: 10.1016/s0006-8993(97)00236-9. [DOI] [PubMed] [Google Scholar]
- De Kloet E. R., Vreugdenhil E., Oitzl M. S., Joëls M. Brain corticosteroid receptor balance in health and disease. Endocr Rev. 1998 Jun;19(3):269–301. doi: 10.1210/edrv.19.3.0331. [DOI] [PubMed] [Google Scholar]
- DeKosky S. T., Scheff S. W., Cotman C. W. Elevated corticosterone levels. A possible cause of reduced axon sprouting in aged animals. Neuroendocrinology. 1984 Jan;38(1):33–38. doi: 10.1159/000123862. [DOI] [PubMed] [Google Scholar]
- Dellu F., Mayo W., Vallée M., Le Moal M., Simon H. Reactivity to novelty during youth as a predictive factor of cognitive impairment in the elderly: a longitudinal study in rats. Brain Res. 1994 Aug 8;653(1-2):51–56. doi: 10.1016/0006-8993(94)90371-9. [DOI] [PubMed] [Google Scholar]
- Eichenbaum H. Conscious awareness, memory and the hippocampus. Nat Neurosci. 1999 Sep;2(9):775–776. doi: 10.1038/12137. [DOI] [PubMed] [Google Scholar]
- Farman N., Bonvalet J. P., Seckl J. R. Aldosterone selectively increases Na(+)-K(+)-ATPase alpha 3-subunit mRNA expression in rat hippocampus. Am J Physiol. 1994 Feb;266(2 Pt 1):C423–C428. doi: 10.1152/ajpcell.1994.266.2.C423. [DOI] [PubMed] [Google Scholar]
- Forster M. J., Dubey A., Dawson K. M., Stutts W. A., Lal H., Sohal R. S. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4765–4769. doi: 10.1073/pnas.93.10.4765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gramsbergen A., Mulder E. J. The influence of betamethasone and dexamethasone on motor development in young rats. Pediatr Res. 1998 Jul;44(1):105–110. doi: 10.1203/00006450-199807000-00017. [DOI] [PubMed] [Google Scholar]
- Hassan A. H., Patchev V. K., von Rosenstiel P., Holsboer F., Almeida O. F. Plasticity of hippocampal corticosteroid receptors during aging in the rat. FASEB J. 1999 Jan;13(1):115–122. doi: 10.1096/fasebj.13.1.115. [DOI] [PubMed] [Google Scholar]
- Iacopino A. M., Christakos S. Corticosterone regulates calbindin-D28k mRNA and protein levels in rat hippocampus. J Biol Chem. 1990 Jun 25;265(18):10177–10180. [PubMed] [Google Scholar]
- Jamieson P. M., Chapman K. E., Edwards C. R., Seckl J. R. 11 beta-hydroxysteroid dehydrogenase is an exclusive 11 beta- reductase in primary cultures of rat hepatocytes: effect of physicochemical and hormonal manipulations. Endocrinology. 1995 Nov;136(11):4754–4761. doi: 10.1210/endo.136.11.7588203. [DOI] [PubMed] [Google Scholar]
- Jamieson P. M., Walker B. R., Chapman K. E., Andrew R., Rossiter S., Seckl J. R. 11 beta-hydroxysteroid dehydrogenase type 1 is a predominant 11 beta-reductase in the intact perfused rat liver. J Endocrinol. 2000 Jun;165(3):685–692. doi: 10.1677/joe.0.1650685. [DOI] [PubMed] [Google Scholar]
- Kerr D. S., Campbell L. W., Thibault O., Landfield P. W. Hippocampal glucocorticoid receptor activation enhances voltage-dependent Ca2+ conductances: relevance to brain aging. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8527–8531. doi: 10.1073/pnas.89.18.8527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitraki E., Karandrea D., Kittas C. Long-lasting effects of stress on glucocorticoid receptor gene expression in the rat brain. Neuroendocrinology. 1999 May;69(5):331–338. doi: 10.1159/000054435. [DOI] [PubMed] [Google Scholar]
- Kotelevtsev Y., Holmes M. C., Burchell A., Houston P. M., Schmoll D., Jamieson P., Best R., Brown R., Edwards C. R., Seckl J. R. 11beta-hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14924–14929. doi: 10.1073/pnas.94.26.14924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kretz O., Reichardt H. M., Schütz G., Bock R. Corticotropin-releasing hormone expression is the major target for glucocorticoid feedback-control at the hypothalamic level. Brain Res. 1999 Feb 13;818(2):488–491. doi: 10.1016/s0006-8993(98)01277-3. [DOI] [PubMed] [Google Scholar]
- Landfield P. W., Baskin R. K., Pitler T. A. Brain aging correlates: retardation by hormonal-pharmacological treatments. Science. 1981 Oct 30;214(4520):581–584. doi: 10.1126/science.6270791. [DOI] [PubMed] [Google Scholar]
- Landfield P. W., Eldridge J. C. Evolving aspects of the glucocorticoid hypothesis of brain aging: hormonal modulation of neuronal calcium homeostasis. Neurobiol Aging. 1994 Jul-Aug;15(4):579–588. doi: 10.1016/0197-4580(94)90101-5. [DOI] [PubMed] [Google Scholar]
- Leverenz J. B., Wilkinson C. W., Wamble M., Corbin S., Grabber J. E., Raskind M. A., Peskind E. R. Effect of chronic high-dose exogenous cortisol on hippocampal neuronal number in aged nonhuman primates. J Neurosci. 1999 Mar 15;19(6):2356–2361. doi: 10.1523/JNEUROSCI.19-06-02356.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy A., Dachir S., Arbel I., Kadar T. Aging, stress, and cognitive function. Ann N Y Acad Sci. 1994 Jun 30;717:79–88. doi: 10.1111/j.1749-6632.1994.tb12075.x. [DOI] [PubMed] [Google Scholar]
- Lupien S. J., de Leon M., de Santi S., Convit A., Tarshish C., Nair N. P., Thakur M., McEwen B. S., Hauger R. L., Meaney M. J. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci. 1998 May;1(1):69–73. doi: 10.1038/271. [DOI] [PubMed] [Google Scholar]
- Lynch M. A. Analysis of the mechanisms underlying the age-related impairment in long-term potentiation in the rat. Rev Neurosci. 1998 Jul-Dec;9(3):169–201. doi: 10.1515/revneuro.1998.9.3.169. [DOI] [PubMed] [Google Scholar]
- Magariños A. M., McEwen B. S., Flügge G., Fuchs E. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci. 1996 May 15;16(10):3534–3540. doi: 10.1523/JNEUROSCI.16-10-03534.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maines M. D., Eke B. C., Weber C. M., Ewing J. F. Corticosterone has a permissive effect on expression of heme oxygenase-1 in CA1-CA3 neurons of hippocampus in thermal-stressed rats. J Neurochem. 1995 Apr;64(4):1769–1779. doi: 10.1046/j.1471-4159.1995.64041769.x. [DOI] [PubMed] [Google Scholar]
- McEwen B. S., Albeck D., Cameron H., Chao H. M., Gould E., Hastings N., Kuroda Y., Luine V., Magariños A. M., McKittrick C. R. Stress and the brain: a paradoxical role for adrenal steroids. Vitam Horm. 1995;51:371–402. doi: 10.1016/s0083-6729(08)61045-6. [DOI] [PubMed] [Google Scholar]
- McEwen B. S. Stress and hippocampal plasticity. Annu Rev Neurosci. 1999;22:105–122. doi: 10.1146/annurev.neuro.22.1.105. [DOI] [PubMed] [Google Scholar]
- McEwen B. S. Stress and the aging hippocampus. Front Neuroendocrinol. 1999 Jan;20(1):49–70. doi: 10.1006/frne.1998.0173. [DOI] [PubMed] [Google Scholar]
- Meaney M. J., Aitken D. H., Sharma S., Viau V. Basal ACTH, corticosterone and corticosterone-binding globulin levels over the diurnal cycle, and age-related changes in hippocampal type I and type II corticosteroid receptor binding capacity in young and aged, handled and nonhandled rats. Neuroendocrinology. 1992 Feb;55(2):204–213. doi: 10.1159/000126116. [DOI] [PubMed] [Google Scholar]
- Meaney M. J., Aitken D. H., van Berkel C., Bhatnagar S., Sapolsky R. M. Effect of neonatal handling on age-related impairments associated with the hippocampus. Science. 1988 Feb 12;239(4841 Pt 1):766–768. doi: 10.1126/science.3340858. [DOI] [PubMed] [Google Scholar]
- Meyer U., Kruhoffer M., Flügge G., Fuchs E. Cloning of glucocorticoid receptor and mineralocorticoid receptor cDNA and gene expression in the central nervous system of the tree shrew (Tupaia belangeri). Brain Res Mol Brain Res. 1998 Apr;55(2):243–253. doi: 10.1016/s0169-328x(98)00004-7. [DOI] [PubMed] [Google Scholar]
- Montkowski A., Barden N., Wotjak C., Stec I., Ganster J., Meaney M., Engelmann M., Reul J. M., Landgraf R., Holsboer F. Long-term antidepressant treatment reduces behavioural deficits in transgenic mice with impaired glucocorticoid receptor function. J Neuroendocrinol. 1995 Nov;7(11):841–845. doi: 10.1111/j.1365-2826.1995.tb00724.x. [DOI] [PubMed] [Google Scholar]
- Morris R. G., Garrud P., Rawlins J. N., O'Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982 Jun 24;297(5868):681–683. doi: 10.1038/297681a0. [DOI] [PubMed] [Google Scholar]
- Nair S. M., Werkman T. R., Craig J., Finnell R., Joëls M., Eberwine J. H. Corticosteroid regulation of ion channel conductances and mRNA levels in individual hippocampal CA1 neurons. J Neurosci. 1998 Apr 1;18(7):2685–2696. doi: 10.1523/JNEUROSCI.18-07-02685.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norris C. M., Halpain S., Foster T. C. Reversal of age-related alterations in synaptic plasticity by blockade of L-type Ca2+ channels. J Neurosci. 1998 May 1;18(9):3171–3179. doi: 10.1523/JNEUROSCI.18-09-03171.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Keefe J., Speakman A. Single unit activity in the rat hippocampus during a spatial memory task. Exp Brain Res. 1987;68(1):1–27. doi: 10.1007/BF00255230. [DOI] [PubMed] [Google Scholar]
- Oguro H., Okada K., Yamaguchi S., Kobayashi S. Sex differences in morphology of the brain stem and cerebellum with normal ageing. Neuroradiology. 1998 Dec;40(12):788–792. doi: 10.1007/s002340050685. [DOI] [PubMed] [Google Scholar]
- Olsson T., Mohammed A. H., Donaldson L. F., Henriksson B. G., Seckl J. R. Glucocorticoid receptor and NGFI-A gene expression are induced in the hippocampus after environmental enrichment in adult rats. Brain Res Mol Brain Res. 1994 Jun;23(4):349–353. doi: 10.1016/0169-328x(94)90246-1. [DOI] [PubMed] [Google Scholar]
- Phillips D. I., Barker D. J., Fall C. H., Seckl J. R., Whorwood C. B., Wood P. J., Walker B. R. Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J Clin Endocrinol Metab. 1998 Mar;83(3):757–760. doi: 10.1210/jcem.83.3.4634. [DOI] [PubMed] [Google Scholar]
- Plotsky P. M., Meaney M. J. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res Mol Brain Res. 1993 May;18(3):195–200. doi: 10.1016/0169-328x(93)90189-v. [DOI] [PubMed] [Google Scholar]
- Porter N. M., Thibault O., Thibault V., Chen K. C., Landfield P. W. Calcium channel density and hippocampal cell death with age in long-term culture. J Neurosci. 1997 Jul 15;17(14):5629–5639. doi: 10.1523/JNEUROSCI.17-14-05629.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajan V., Edwards C. R., Seckl J. R. 11 beta-Hydroxysteroid dehydrogenase in cultured hippocampal cells reactivates inert 11-dehydrocorticosterone, potentiating neurotoxicity. J Neurosci. 1996 Jan;16(1):65–70. doi: 10.1523/JNEUROSCI.16-01-00065.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rapp P. R., Gallagher M. Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9926–9930. doi: 10.1073/pnas.93.18.9926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen T., Schliemann T., Sørensen J. C., Zimmer J., West M. J. Memory impaired aged rats: no loss of principal hippocampal and subicular neurons. Neurobiol Aging. 1996 Jan-Feb;17(1):143–147. doi: 10.1016/0197-4580(95)02032-2. [DOI] [PubMed] [Google Scholar]
- Raz N., Torres I. J., Spencer W. D., White K., Acker J. D. Age-related regional differences in cerebellar vermis observed in vivo. Arch Neurol. 1992 Apr;49(4):412–416. doi: 10.1001/archneur.1992.00530280106030. [DOI] [PubMed] [Google Scholar]
- Robson A. C., Leckie C. M., Seckl J. R., Holmes M. C. 11 Beta-hydroxysteroid dehydrogenase type 2 in the postnatal and adult rat brain. Brain Res Mol Brain Res. 1998 Oct 30;61(1-2):1–10. doi: 10.1016/s0169-328x(98)00161-2. [DOI] [PubMed] [Google Scholar]
- Rosewicz S., McDonald A. R., Maddux B. A., Goldfine I. D., Miesfeld R. L., Logsdon C. D. Mechanism of glucocorticoid receptor down-regulation by glucocorticoids. J Biol Chem. 1988 Feb 25;263(6):2581–2584. [PubMed] [Google Scholar]
- Sapolsky R. M., Krey L. C., McEwen B. S. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev. 1986 Aug;7(3):284–301. doi: 10.1210/edrv-7-3-284. [DOI] [PubMed] [Google Scholar]
- Sapolsky RM. Stress, Glucocorticoids, and Damage to the Nervous System: The Current State of Confusion. Stress. 1996 Jul;1(1):1–19. doi: 10.3109/10253899609001092. [DOI] [PubMed] [Google Scholar]
- Schulman H., Hanson P. I., Meyer T. Decoding calcium signals by multifunctional CaM kinase. Cell Calcium. 1992 Jun-Jul;13(6-7):401–411. doi: 10.1016/0143-4160(92)90053-u. [DOI] [PubMed] [Google Scholar]
- Scully J. L., Otten U. Glucocorticoids, neurotrophins and neurodegeneration. J Steroid Biochem Mol Biol. 1995 May;52(5):391–401. doi: 10.1016/0960-0760(94)00190-w. [DOI] [PubMed] [Google Scholar]
- Seckl J. R., Olsson T. Glucocorticoid hypersecretion and the age-impaired hippocampus: cause or effect? J Endocrinol. 1995 May;145(2):201–211. doi: 10.1677/joe.0.1450201. [DOI] [PubMed] [Google Scholar]
- Seckl J. R. Physiologic programming of the fetus. Clin Perinatol. 1998 Dec;25(4):939-62, vii. [PubMed] [Google Scholar]
- Slotkin T. A., McCook E. C., Ritchie J. C., Carroll B. J., Seidler F. J. Serotonin transporter expression in rat brain regions and blood platelets: aging and glucocorticoid effects. Biol Psychiatry. 1997 Jan 15;41(2):172–183. doi: 10.1016/S0006-3223(96)00215-6. [DOI] [PubMed] [Google Scholar]
- Slotkin T. A., Zhang J., McCook E. C., Seidler F. J. Glucocorticoid-targeting of the adenylyl cyclase signaling pathway in the cerebellum of young vs. aged rats. Brain Res. 1998 Aug 3;800(2):236–244. doi: 10.1016/s0006-8993(98)00518-6. [DOI] [PubMed] [Google Scholar]
- Sousa N., Paula-Barbosa M. M., Almeida O. F. Ligand and subfield specificity of corticoid-induced neuronal loss in the rat hippocampal formation. Neuroscience. 1999;89(4):1079–1087. doi: 10.1016/s0306-4522(98)00311-x. [DOI] [PubMed] [Google Scholar]
- Spencer R. L., Kim P. J., Kalman B. A., Cole M. A. Evidence for mineralocorticoid receptor facilitation of glucocorticoid receptor-dependent regulation of hypothalamic-pituitary-adrenal axis activity. Endocrinology. 1998 Jun;139(6):2718–2726. doi: 10.1210/endo.139.6.6029. [DOI] [PubMed] [Google Scholar]
- Talmi M., Carlier E., Bengelloun W., Soumireu-Mourat B. Chronic RU486 treatment reduces age-related alterations of mouse hippocampal function. Neurobiol Aging. 1996 Jan-Feb;17(1):9–14. doi: 10.1016/0197-4580(95)00094-1. [DOI] [PubMed] [Google Scholar]
- Tang Y. P., Shimizu E., Dube G. R., Rampon C., Kerchner G. A., Zhuo M., Liu G., Tsien J. Z. Genetic enhancement of learning and memory in mice. Nature. 1999 Sep 2;401(6748):63–69. doi: 10.1038/43432. [DOI] [PubMed] [Google Scholar]
- Tanila H., Sipilä P., Shapiro M., Eichenbaum H. Brain aging: impaired coding of novel environmental cues. J Neurosci. 1997 Jul 1;17(13):5167–5174. doi: 10.1523/JNEUROSCI.17-13-05167.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trapp T., Rupprecht R., Castrén M., Reul J. M., Holsboer F. Heterodimerization between mineralocorticoid and glucocorticoid receptor: a new principle of glucocorticoid action in the CNS. Neuron. 1994 Dec;13(6):1457–1462. doi: 10.1016/0896-6273(94)90431-6. [DOI] [PubMed] [Google Scholar]
- Triarhou L. C. Rate of neuronal fallout in a transsynaptic cerebellar model. Brain Res Bull. 1998 Oct;47(3):219–222. doi: 10.1016/s0361-9230(98)00076-8. [DOI] [PubMed] [Google Scholar]
- Vallée M., MacCari S., Dellu F., Simon H., Le Moal M., Mayo W. Long-term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: a longitudinal study in the rat. Eur J Neurosci. 1999 Aug;11(8):2906–2916. doi: 10.1046/j.1460-9568.1999.00705.x. [DOI] [PubMed] [Google Scholar]
- Verkhratsky A., Toescu E. C. Calcium and neuronal ageing. Trends Neurosci. 1998 Jan;21(1):2–7. doi: 10.1016/s0166-2236(97)01156-9. [DOI] [PubMed] [Google Scholar]
- Walton M. R., Dragunow I. Is CREB a key to neuronal survival? Trends Neurosci. 2000 Feb;23(2):48–53. doi: 10.1016/s0166-2236(99)01500-3. [DOI] [PubMed] [Google Scholar]
- Watanabe Y., Gould E., McEwen B. S. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 1992 Aug 21;588(2):341–345. doi: 10.1016/0006-8993(92)91597-8. [DOI] [PubMed] [Google Scholar]
- Winocur G. Environmental influences on cognitive decline in aged rats. Neurobiol Aging. 1998 Nov-Dec;19(6):589–597. doi: 10.1016/s0197-4580(98)00107-9. [DOI] [PubMed] [Google Scholar]
- Woolley C. S., Gould E., McEwen B. S. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res. 1990 Oct 29;531(1-2):225–231. doi: 10.1016/0006-8993(90)90778-a. [DOI] [PubMed] [Google Scholar]
- Yau J. L., Olsson T., Morris R. G., Meaney M. J., Seckl J. R. Glucocorticoids, hippocampal corticosteroid receptor gene expression and antidepressant treatment: relationship with spatial learning in young and aged rats. Neuroscience. 1995 Jun;66(3):571–581. doi: 10.1016/0306-4522(94)00612-9. [DOI] [PubMed] [Google Scholar]
- Young E. A. DHEA: mood, memory, and aging. Biol Psychiatry. 1999 Jun 15;45(12):1531–1532. doi: 10.1016/s0006-3223(99)00046-3. [DOI] [PubMed] [Google Scholar]