Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2000 Nov;197(Pt 4):635–646. doi: 10.1046/j.1469-7580.2000.19740635.x

Immunohistochemical analysis of development of desmin-positive hepatic stellate cells in mouse liver

MIHO NITOU 1, KATSUTOSHI ISHIKAWA 1, NOBUYOSHI SHIOJIRI 1,
PMCID: PMC1468179  PMID: 11197537

Abstract

Development of desmin-positive hepatic stellate cells was studied in mice using double immunofluorescent techniques and in vitro cultures with special attention given to their cell lineages. Several studies recently reported on the presence of cells that are immunologically reactive with both antidesmin and anticytokeratin antibodies in young fetal rat livers, and suggested the possibility that these cells give rise to hepatocytes and hepatic stellate cells. At early stages of mouse liver development, stellate cells with desmin-positive filaments were scattered in the liver parenchyma. However, the stellate cells definitely differed from hepatoblasts and hepatocytes in terms of their morphology and expression of desmin and hepatoblast and hepatocyte-specific E-cadherin in the liver. Fetal hepatoblasts and hepatocytes did not react with antidesmin antibodies, nor did desmin-positive stellate cells express E-cadherin in vivo and in vitro. Thus it is likely that desmin-positive stellate cells and hepatoblasts belong to different cell lineages. In the fetal liver, the desmin-positive stellate cells surrounded blood vessels, and extended their processes to haematopoietic cells and megakaryocytes. Many, but not all, hepatoblasts and hepatocytes were observed to be associated with the stellate cells. At fetal stages, cellular processes positive for desmin in the stellate cells were also thick compared with those in the adult liver, in which desmin-positive stellate cells lay in Disse's space and were closely associated with all hepatocytes. These developmental changes in the geography of desmin-positive cells in the liver parenchyma and their morphology may be associated with their maturation and interactions with other cell types.

Keywords: Cell lineage, hepatoblasts, E-cadherin, cytokeratins, double immunostaining

Full Text

The Full Text of this article is available as a PDF (677.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander B., Guzail M. A., Foster C. S. Morphological changes during hepatocellular maturity in neonatal rats. Anat Rec. 1997 May;248(1):104–109. doi: 10.1002/(SICI)1097-0185(199705)248:1<104::AID-AR12>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  2. Amenta P. S., Harrison D. Expression and potential role of the extracellular matrix in hepatic ontogenesis: a review. Microsc Res Tech. 1997 Nov 15;39(4):372–386. doi: 10.1002/(SICI)1097-0029(19971115)39:4<372::AID-JEMT7>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  3. Baloch Z., Klapper J., Buchanan L., Schwartz M., Amenta P. S. Ontogenesis of the murine hepatic extracellular matrix: an immunohistochemical study. Differentiation. 1992 Nov;51(3):209–218. doi: 10.1111/j.1432-0436.1992.tb00698.x. [DOI] [PubMed] [Google Scholar]
  4. Bennett A. L., Paulson K. E., Miller R. E., Darnell J. E., Jr Acquisition of antigens characteristic of adult pericentral hepatocytes by differentiating fetal hepatoblasts in vitro. J Cell Biol. 1987 Sep;105(3):1073–1085. doi: 10.1083/jcb.105.3.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blomhoff R., Rasmussen M., Nilsson A., Norum K. R., Berg T., Blaner W. S., Kato M., Mertz J. R., Goodman D. S., Eriksson U. Hepatic retinol metabolism. Distribution of retinoids, enzymes, and binding proteins in isolated rat liver cells. J Biol Chem. 1985 Nov 5;260(25):13560–13565. [PubMed] [Google Scholar]
  6. Buniatian G., Gebhardt R., Schrenk D., Hamprecht B. Colocalization of three types of intermediate filament proteins in perisinusoidal stellate cells: glial fibrillary acidic protein as a new cellular marker. Eur J Cell Biol. 1996 May;70(1):23–32. [PubMed] [Google Scholar]
  7. Cascio S., Zaret K. S. Hepatocyte differentiation initiates during endodermal-mesenchymal interactions prior to liver formation. Development. 1991 Sep;113(1):217–225. doi: 10.1242/dev.113.1.217. [DOI] [PubMed] [Google Scholar]
  8. Dingemanse M. A., De Jonge W. J., De Boer P. A., Mori M., Lamers W. H., Moorman A. F. Development of the ornithine cycle in rat liver: zonation of a metabolic pathway. Hepatology. 1996 Aug;24(2):407–411. doi: 10.1002/hep.510240219. [DOI] [PubMed] [Google Scholar]
  9. Enzan H., Hara H., Yamashita Y., Ohkita T., Yamane T. Fine structure of hepatic sinusoids and their development in human embryos and fetuses. Acta Pathol Jpn. 1983 May;33(3):447–466. doi: 10.1111/j.1440-1827.1983.tb00352.x. [DOI] [PubMed] [Google Scholar]
  10. Enzan H., Himeno H., Hiroi M., Kiyoku H., Saibara T., Onishi S. Development of hepatic sinusoidal structure with special reference to the Ito cells. Microsc Res Tech. 1997 Nov 15;39(4):336–349. doi: 10.1002/(SICI)1097-0029(19971115)39:4<336::AID-JEMT4>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  11. Friedman S. L., Roll F. J., Boyles J., Bissell D. M. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8681–8685. doi: 10.1073/pnas.82.24.8681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Godlewski G., Gaubert-Cristol R., Rouy S., Prudhomme M. Liver development in the rat and in man during the embryonic period (Carnegie stages 11-23). Microsc Res Tech. 1997 Nov 15;39(4):314–327. doi: 10.1002/(SICI)1097-0029(19971115)39:4<314::AID-JEMT2>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  13. Gressner A. M., Bachem M. G. Molecular mechanisms of liver fibrogenesis--a homage to the role of activated fat-storing cells. Digestion. 1995;56(5):335–346. doi: 10.1159/000201257. [DOI] [PubMed] [Google Scholar]
  14. Gressner A. M. The cell biology of liver fibrogenesis - an imbalance of proliferation, growth arrest and apoptosis of myofibroblasts. Cell Tissue Res. 1998 Jun;292(3):447–452. doi: 10.1007/s004410051073. [DOI] [PubMed] [Google Scholar]
  15. Ikeda H., Nagoshi S., Ohno A., Yanase M., Maekawa H., Fujiwara K. Activated rat stellate cells express c-met and respond to hepatocyte growth factor to enhance transforming growth factor beta1 expression and DNA synthesis. Biochem Biophys Res Commun. 1998 Sep 29;250(3):769–775. doi: 10.1006/bbrc.1998.9387. [DOI] [PubMed] [Google Scholar]
  16. Imai K., Senoo H. Morphology of sites of adhesion between hepatic stellate cells (vitamin A-storing cells) and a three-dimensional extracellular matrix. Anat Rec. 1998 Apr;250(4):430–437. doi: 10.1002/(SICI)1097-0185(199804)250:4<430::AID-AR6>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  17. Johnson G. D., Nogueira Araujo G. M. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43(3):349–350. doi: 10.1016/0022-1759(81)90183-6. [DOI] [PubMed] [Google Scholar]
  18. Kiassov A. P., Van Eyken P., van Pelt J. F., Depla E., Fevery J., Desmet V. J., Yap S. H. Desmin expressing nonhematopoietic liver cells during rat liver development: an immunohistochemical and morphometric study. Differentiation. 1995 Nov;59(4):253–258. doi: 10.1046/j.1432-0436.1995.5940253.x. [DOI] [PubMed] [Google Scholar]
  19. Knittel T., Aurisch S., Neubauer K., Eichhorst S., Ramadori G. Cell-type-specific expression of neural cell adhesion molecule (N-CAM) in Ito cells of rat liver. Up-regulation during in vitro activation and in hepatic tissue repair. Am J Pathol. 1996 Aug;149(2):449–462. [PMC free article] [PubMed] [Google Scholar]
  20. Kojima N., Sato M., Imai K., Miura M., Matano Y., Senoo H. Hepatic stellate cells (vitamin A-storing cells) change their cytoskeleton structure by extracellular matrix components through a signal transduction system. Histochem Cell Biol. 1998 Aug;110(2):121–128. doi: 10.1007/s004180050273. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lamers W. H., Zonneveld D., Charles R. Inducibility of carbamoylphosphate synthetase (ammonia) in cultures of embryonic hepatocytes: ontogenesis of the responsiveness to hormones. Dev Biol. 1984 Oct;105(2):500–508. doi: 10.1016/0012-1606(84)90307-5. [DOI] [PubMed] [Google Scholar]
  23. Mallat A., Gallois C., Tao J., Habib A., Maclouf J., Mavier P., Préaux A. M., Lotersztajn S. Platelet-derived growth factor-BB and thrombin generate positive and negative signals for human hepatic stellate cell proliferation. Role of a prostaglandin/cyclic AMP pathway and cross-talk with endothelin receptors. J Biol Chem. 1998 Oct 16;273(42):27300–27305. doi: 10.1074/jbc.273.42.27300. [DOI] [PubMed] [Google Scholar]
  24. Matsumoto E., Hirosawa K., Abe K., Naka S. Development of the vitamin A-storing cell in mouse liver during late fetal and neonatal periods. Anat Embryol (Berl) 1984;169(3):249–259. doi: 10.1007/BF00315630. [DOI] [PubMed] [Google Scholar]
  25. Milani S., Herbst H., Schuppan D., Hahn E. G., Stein H. In situ hybridization for procollagen types I, III and IV mRNA in normal and fibrotic rat liver: evidence for predominant expression in nonparenchymal liver cells. Hepatology. 1989 Jul;10(1):84–92. doi: 10.1002/hep.1840100117. [DOI] [PubMed] [Google Scholar]
  26. Mitaka T., Sato F., Mizuguchi T., Yokono T., Mochizuki Y. Reconstruction of hepatic organoid by rat small hepatocytes and hepatic nonparenchymal cells. Hepatology. 1999 Jan;29(1):111–125. doi: 10.1002/hep.510290103. [DOI] [PubMed] [Google Scholar]
  27. Molero C., Benito M., Lorenzo M. Glucose-6-phosphate dehydrogenase gene expression in fetal hepatocyte primary cultures under nonproliferative and proliferative conditions. Exp Cell Res. 1994 Jan;210(1):26–32. doi: 10.1006/excr.1994.1004. [DOI] [PubMed] [Google Scholar]
  28. Nakatani K., Seki S., Kawada N., Kobayashi K., Kaneda K. Expression of neural cell adhesion molecule (N-CAM) in perisinusoidal stellate cells of the human liver. Cell Tissue Res. 1996 Jan;283(1):159–165. doi: 10.1007/s004410050524. [DOI] [PubMed] [Google Scholar]
  29. Neubauer K., Knittel T., Aurisch S., Fellmer P., Ramadori G. Glial fibrillary acidic protein--a cell type specific marker for Ito cells in vivo and in vitro. J Hepatol. 1996 Jun;24(6):719–730. doi: 10.1016/s0168-8278(96)80269-8. [DOI] [PubMed] [Google Scholar]
  30. Niki T., Pekny M., Hellemans K., Bleser P. D., Berg K. V., Vaeyens F., Quartier E., Schuit F., Geerts A. Class VI intermediate filament protein nestin is induced during activation of rat hepatic stellate cells. Hepatology. 1999 Feb;29(2):520–527. doi: 10.1002/hep.510290232. [DOI] [PubMed] [Google Scholar]
  31. Ogou S. I., Yoshida-Noro C., Takeichi M. Calcium-dependent cell-cell adhesion molecules common to hepatocytes and teratocarcinoma stem cells. J Cell Biol. 1983 Sep;97(3):944–948. doi: 10.1083/jcb.97.3.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Okamoto M., Ishida Y., Keogh A., Strain A. Evaluation of the function of primary human hepatocytes co-cultured with the human hepatic stellate cell (HSC) line LI90. Int J Artif Organs. 1998 Jun;21(6):353–359. [PubMed] [Google Scholar]
  33. Petell J. K., Quaroni A., Hong W. J., Hixson D. C., Amarri S., Reif S., Bujanover Y. Alteration in the regulation of plasma membrane glycoproteins of the hepatocyte during ontogeny. Exp Cell Res. 1990 Apr;187(2):299–308. doi: 10.1016/0014-4827(90)90095-r. [DOI] [PubMed] [Google Scholar]
  34. Roncero C., Fabregat I., Benito M. Regulation of gene expression by interleukin-6 in fetal rat hepatocyte primary cultures: role of epidermal growth factor and dexamethasone. Hepatology. 1995 Dec;22(6):1769–1775. [PubMed] [Google Scholar]
  35. Shiojiri N. Enzymo- and immunocytochemical analyses of the differentiation of liver cells in the prenatal mouse. J Embryol Exp Morphol. 1981 Apr;62:139–152. [PubMed] [Google Scholar]
  36. Shiojiri N., Lemire J. M., Fausto N. Cell lineages and oval cell progenitors in rat liver development. Cancer Res. 1991 May 15;51(10):2611–2620. [PubMed] [Google Scholar]
  37. Shiojiri N. The origin of intrahepatic bile duct cells in the mouse. J Embryol Exp Morphol. 1984 Feb;79:25–39. [PubMed] [Google Scholar]
  38. Shiojiri N. Transient expression of bile-duct-specific cytokeratin in fetal mouse hepatocytes. Cell Tissue Res. 1994 Oct;278(1):117–123. doi: 10.1007/BF00305783. [DOI] [PubMed] [Google Scholar]
  39. Stamatoglou S. C., Enrich C., Manson M. M., Hughes R. C. Temporal changes in the expression and distribution of adhesion molecules during liver development and regeneration. J Cell Biol. 1992 Mar;116(6):1507–1515. doi: 10.1083/jcb.116.6.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development. 1988 Apr;102(4):639–655. doi: 10.1242/dev.102.4.639. [DOI] [PubMed] [Google Scholar]
  41. Thompson N. L., Panzica M. A., Hull G., Lin S. H., Curran T. R., Gruppuso P. A., Baum O., Reutter W., Hixson D. C. Spatiotemporal expression of two cell-cell adhesion molecule 105 isoforms during liver development. Cell Growth Differ. 1993 Apr;4(4):257–268. [PubMed] [Google Scholar]
  42. Théret N., Musso O., L'Helgoualc'h A., Clément B. Activation of matrix metalloproteinase-2 from hepatic stellate cells requires interactions with hepatocytes. Am J Pathol. 1997 Jan;150(1):51–58. [PMC free article] [PubMed] [Google Scholar]
  43. Tsutsumi M., Takada A., Takase S. Characterization of desmin-positive rat liver sinusoidal cells. Hepatology. 1987 Mar-Apr;7(2):277–284. doi: 10.1002/hep.1840070212. [DOI] [PubMed] [Google Scholar]
  44. Van Eyken P., Sciot R., Desmet V. Intrahepatic bile duct development in the rat: a cytokeratin-immunohistochemical study. Lab Invest. 1988 Jul;59(1):52–59. [PubMed] [Google Scholar]
  45. Vassy J., Rigaut J. P., Briane D., Kraemer M. Confocal microscopy immunofluorescence localization of desmin and other intermediate filament proteins in fetal rat livers. Hepatology. 1993 Feb;17(2):293–300. [PubMed] [Google Scholar]
  46. Yeoh G. C., Brighton V. J., Angus D. A., Kraemer M., Vassy J., Chalemeau M. T. The effect of dexamethasone on albumin production by fetal rat hepatocytes in culture. Eur J Cell Biol. 1985 Jul;38(1):157–164. [PubMed] [Google Scholar]
  47. Yokoi Y., Namihisa T., Kuroda H., Komatsu I., Miyazaki A., Watanabe S., Usui K. Immunocytochemical detection of desmin in fat-storing cells (Ito cells). Hepatology. 1984 Jul-Aug;4(4):709–714. doi: 10.1002/hep.1840040425. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES