Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Jan;198(Pt 1):3–15. doi: 10.1046/j.1469-7580.2001.19810003.x

A comparative analysis of the differential spatial and temporal distributions of the large (aggrecan, versican) and small (decorin, biglycan, fibromodulin) proteoglycans of the intervertebral disc

JAMES MELROSE 1,, PETER GHOSH 1, THOMAS K F TAYLOR 1
PMCID: PMC1468186  PMID: 11215765

Abstract

This study provides a comparative analysis of the temporal and spatial distribution of 5 intervertebral disc (IVD) proteoglycans (PGs) in sheep. The main PGs in the 2 and 10 y old sheep groups were polydisperse chondroitin sulphate and keratan sulphate substituted species. Their proportions did not differ markedly either with spinal level or disc zone. In contrast, the fetal discs contained 2 slow migrating (by composite agarose polyacrylamide gel electrophoresis, CAPAGE), relatively monodisperse chondroitin sulphate-rich aggrecan species which were also identified by monoclonal antibody 7-D-4 to an atypical chondroitin sulphate isomer presentation previously found in chick limb bud, and shark cartilage. The main small PG detectable in the fetal discs was biglycan, whereas decorin predominated in the 2 and 10 y old IVD samples; its levels were highest in the outer annulus fibrosus (AF). Versican was most abundant in the AF of the fetal sheep group; it was significantly less abundant in the 2 and 10 y old groups. Furthermore, versican was immunolocalised between adjacent layers of annular lamellae suggesting that it may have some role in the provision of the viscoelastic properties to this tissue. Versican was also diffusely distributed throughout the nucleus pulposus of fetal IVDs, and its levels were significantly lower in adult IVD specimens. This is the first study to identify versican in ovine IVD tissue sections and confirmed an earlier study which demonstrated that ovine IVD cells synthesised versican in culture (Melrose et al. 2000). The variable distribution of the PGs identified in this study provides further evidence of differences in phenotypic expression of IVD cell populations during growth and development and further demonstrates the complexity of the PGs in this heterogeneous but intricately organised connective tissue.

Keywords: Intervertebral disc, proteoglycan heterogeneity, ageing/disc degeneration, 7-D-4 PG epitope, fibromodulin, versican, decorin/biglycan, aggrecan

Full Text

The Full Text of this article is available as a PDF (505.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aigner T., Gresk-otter K. R., Fairbank J. C., von der Mark K., Urban J. P. Variation with age in the pattern of type X collagen expression in normal and scoliotic human intervertebral discs. Calcif Tissue Int. 1998 Sep;63(3):263–268. doi: 10.1007/s002239900524. [DOI] [PubMed] [Google Scholar]
  2. Allington W. B., Cordry A. L., McCullough G. A., Mitchell D. E., Nelson J. W. Electrophoretic concentration of macromolecules. Anal Biochem. 1978 Mar;85(1):188–196. doi: 10.1016/0003-2697(78)90289-0. [DOI] [PubMed] [Google Scholar]
  3. Antoniou J., Goudsouzian N. M., Heathfield T. F., Winterbottom N., Steffen T., Poole A. R., Aebi M., Alini M. The human lumbar endplate. Evidence of changes in biosynthesis and denaturation of the extracellular matrix with growth, maturation, aging, and degeneration. Spine (Phila Pa 1976) 1996 May 15;21(10):1153–1161. doi: 10.1097/00007632-199605150-00006. [DOI] [PubMed] [Google Scholar]
  4. Antoniou J., Steffen T., Nelson F., Winterbottom N., Hollander A. P., Poole R. A., Aebi M., Alini M. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest. 1996 Aug 15;98(4):996–1003. doi: 10.1172/JCI118884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aspberg A., Adam S., Kostka G., Timpl R., Heinegård D. Fibulin-1 is a ligand for the C-type lectin domains of aggrecan and versican. J Biol Chem. 1999 Jul 16;274(29):20444–20449. doi: 10.1074/jbc.274.29.20444. [DOI] [PubMed] [Google Scholar]
  6. BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
  7. Bhown A. S., Mole J. E., Hunter F., Bennett J. C. High-sensitivity sequence determination of proteins quantitatively recovered from sodium dodecyl sulfate gels using an improved electrodialysis procedure. Anal Biochem. 1980 Mar 15;103(1):184–190. doi: 10.1016/0003-2697(80)90254-7. [DOI] [PubMed] [Google Scholar]
  8. Bianco P., Fisher L. W., Young M. F., Termine J. D., Robey P. G. Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues. J Histochem Cytochem. 1990 Nov;38(11):1549–1563. doi: 10.1177/38.11.2212616. [DOI] [PubMed] [Google Scholar]
  9. Bode-Lesniewska B., Dours-Zimmermann M. T., Odermatt B. F., Briner J., Heitz P. U., Zimmermann D. R. Distribution of the large aggregating proteoglycan versican in adult human tissues. J Histochem Cytochem. 1996 Apr;44(4):303–312. doi: 10.1177/44.4.8601689. [DOI] [PubMed] [Google Scholar]
  10. Boos N., Nerlich A. G., Wiest I., von der Mark K., Aebi M. Immunolocalization of type X collagen in human lumbar intervertebral discs during ageing and degeneration. Histochem Cell Biol. 1997 Dec;108(6):471–480. doi: 10.1007/s004180050187. [DOI] [PubMed] [Google Scholar]
  11. Brown D. C., Vogel K. G. Characteristics of the in vitro interaction of a small proteoglycan (PG II) of bovine tendon with type I collagen. Matrix. 1989;9(6):468–478. doi: 10.1016/s0934-8832(11)80016-8. [DOI] [PubMed] [Google Scholar]
  12. Buckwalter J. A. Aging and degeneration of the human intervertebral disc. Spine (Phila Pa 1976) 1995 Jun 1;20(11):1307–1314. doi: 10.1097/00007632-199506000-00022. [DOI] [PubMed] [Google Scholar]
  13. Caterson B., Mahmoodian F., Sorrell J. M., Hardingham T. E., Bayliss M. T., Carney S. L., Ratcliffe A., Muir H. Modulation of native chondroitin sulphate structure in tissue development and in disease. J Cell Sci. 1990 Nov;97(Pt 3):411–417. doi: 10.1242/jcs.97.3.411. [DOI] [PubMed] [Google Scholar]
  14. Chelberg M. K., Banks G. M., Geiger D. F., Oegema T. R., Jr Identification of heterogeneous cell populations in normal human intervertebral disc. J Anat. 1995 Feb;186(Pt 1):43–53. [PMC free article] [PubMed] [Google Scholar]
  15. Eyre D. R. Biochemistry of the intervertebral disc. Int Rev Connect Tissue Res. 1979;8:227–291. doi: 10.1016/b978-0-12-363708-6.50012-6. [DOI] [PubMed] [Google Scholar]
  16. Fisher L. W., Stubbs J. T., 3rd, Young M. F. Antisera and cDNA probes to human and certain animal model bone matrix noncollagenous proteins. Acta Orthop Scand Suppl. 1995 Oct;266:61–65. [PubMed] [Google Scholar]
  17. Götz W., Barnert S., Bertagnoli R., Miosge N., Kresse H., Herken R. Immunohistochemical localization of the small proteoglycans decorin and biglycan in human intervertebral discs. Cell Tissue Res. 1997 Jul;289(1):185–190. doi: 10.1007/s004410050864. [DOI] [PubMed] [Google Scholar]
  18. Harper J. R., Spiro R. C., Gaarde W. A., Tamura R. N., Pierschbacher M. D., Noble N. A., Stecker K. K., Border W. A. Role of transforming growth factor beta and decorin in controlling fibrosis. Methods Enzymol. 1994;245:241–254. doi: 10.1016/0076-6879(94)45014-5. [DOI] [PubMed] [Google Scholar]
  19. Hazell P. K., Dent C., Fairclough J. A., Bayliss M. T., Hardingham T. E. Changes in glycosaminoglycan epitope levels in knee joint fluid following injury. Arthritis Rheum. 1995 Jul;38(7):953–959. doi: 10.1002/art.1780380711. [DOI] [PubMed] [Google Scholar]
  20. Heinegård D., Björne-Persson A., Cöster L., Franzén A., Gardell S., Malmström A., Paulsson M., Sandfalk R., Vogel K. The core proteins of large and small interstitial proteoglycans from various connective tissues form distinct subgroups. Biochem J. 1985 Aug 15;230(1):181–194. doi: 10.1042/bj2300181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Heinegård D., Sommarin Y., Hedbom E., Wieslander J., Larsson B. Assay of proteoglycan populations using agarose-polyacrylamide gel electrophoresis. Anal Biochem. 1985 Nov 15;151(1):41–48. doi: 10.1016/0003-2697(85)90050-8. [DOI] [PubMed] [Google Scholar]
  22. Inkinen R. I., Lammi M. J., Agren U., Tammi R., Puustjärvi K., Tammi M. I. Hyaluronan distribution in the human and canine intervertebral disc and cartilage endplate. Histochem J. 1999 Sep;31(9):579–587. doi: 10.1023/a:1003898923823. [DOI] [PubMed] [Google Scholar]
  23. Inkinen R. I., Lammi M. J., Lehmonen S., Puustjärvi K., Käpä E., Tammi M. I. Relative increase of biglycan and decorin and altered chondroitin sulfate epitopes in the degenerating human intervertebral disc. J Rheumatol. 1998 Mar;25(3):506–514. [PubMed] [Google Scholar]
  24. Johnson E. F., Caldwell R. W., Berryman H. E., Miller A., Chetty K. Elastic fibers in the anulus fibrosus of the dog intervertebral disc. Acta Anat (Basel) 1984;118(4):238–242. doi: 10.1159/000145851. [DOI] [PubMed] [Google Scholar]
  25. Johnson E. F., Chetty K., Moore I. M., Stewart A., Jones W. The distribution and arrangement of elastic fibres in the intervertebral disc of the adult human. J Anat. 1982 Sep;135(Pt 2):301–309. [PMC free article] [PubMed] [Google Scholar]
  26. Johnstone B., Bayliss M. T. The large proteoglycans of the human intervertebral disc. Changes in their biosynthesis and structure with age, topography, and pathology. Spine (Phila Pa 1976) 1995 Mar 15;20(6):674–684. doi: 10.1097/00007632-199503150-00008. [DOI] [PubMed] [Google Scholar]
  27. Johnstone B., Markopoulos M., Neame P., Caterson B. Identification and characterization of glycanated and non-glycanated forms of biglycan and decorin in the human intervertebral disc. Biochem J. 1993 Jun 15;292(Pt 3):661–666. doi: 10.1042/bj2920661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kumaratilake J. S., Gibson M. A., Fanning J. C., Cleary E. G. The tissue distribution of microfibrils reacting with a monospecific antibody to MAGP, the major glycoprotein antigen of elastin-associated microfibrils. Eur J Cell Biol. 1989 Oct;50(1):117–127. [PubMed] [Google Scholar]
  29. Melrose J., Ghosh P., Taylor T. K., Hall A., Osti O. L., Vernon-Roberts B., Fraser R. D. A longitudinal study of the matrix changes induced in the intervertebral disc by surgical damage to the annulus fibrosus. J Orthop Res. 1992 Sep;10(5):665–676. doi: 10.1002/jor.1100100509. [DOI] [PubMed] [Google Scholar]
  30. Melrose J., Ghosh P., Taylor T. K., Latham J., Moore R. Topographical variation in the catabolism of aggrecan in an ovine annular lesion model of experimental disc degeneration. J Spinal Disord. 1997 Feb;10(1):55–67. [PubMed] [Google Scholar]
  31. Melrose J., Ghosh P., Taylor T. K. Proteoglycan heterogeneity in the normal adult ovine intervertebral disc. Matrix Biol. 1994 Jan;14(1):61–75. doi: 10.1016/0945-053x(94)90030-2. [DOI] [PubMed] [Google Scholar]
  32. Melrose J., Ghosh P., Taylor T. K., Vernon-Roberts B., Latham J., Moore R. Elevated synthesis of biglycan and decorin in an ovine annular lesion model of experimental disc degeneration. Eur Spine J. 1997;6(6):376–384. doi: 10.1007/BF01834063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Melrose J., Little C. B., Ghosh P. Detection of aggregatable proteoglycan populations by affinity blotting using biotinylated hyaluronan. Anal Biochem. 1998 Feb 15;256(2):149–157. doi: 10.1006/abio.1997.2509. [DOI] [PubMed] [Google Scholar]
  34. Melrose J., Smith S., Ghosh P. Differential expression of proteoglycan epitopes by ovine intervertebral disc cells. J Anat. 2000 Aug;197(Pt 2):189–198. doi: 10.1046/j.1469-7580.2000.19720189.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nerlich A. G., Boos N., Wiest I., Aebi M. Immunolocalization of major interstitial collagen types in human lumbar intervertebral discs of various ages. Virchows Arch. 1998 Jan;432(1):67–76. doi: 10.1007/s004280050136. [DOI] [PubMed] [Google Scholar]
  36. Nerlich A. G., Schleicher E. D., Boos N. 1997 Volvo Award winner in basic science studies. Immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine (Phila Pa 1976) 1997 Dec 15;22(24):2781–2795. doi: 10.1097/00007632-199712150-00001. [DOI] [PubMed] [Google Scholar]
  37. Pearce R. H., Grimmer B. J., Adams M. E. Degeneration and the chemical composition of the human lumbar intervertebral disc. J Orthop Res. 1987;5(2):198–205. doi: 10.1002/jor.1100050206. [DOI] [PubMed] [Google Scholar]
  38. Roberts S., Menage J., Duance V., Wotton S., Ayad S. 1991 Volvo Award in basic sciences. Collagen types around the cells of the intervertebral disc and cartilage end plate: an immunolocalization study. Spine (Phila Pa 1976) 1991 Sep;16(9):1030–1038. [PubMed] [Google Scholar]
  39. Rosenberg L. C., Choi H. U., Poole A. R., Lewandowska K., Culp L. A. Biological roles of dermatan sulphate proteoglycans. Ciba Found Symp. 1986;124:47–68. doi: 10.1002/9780470513385.ch4. [DOI] [PubMed] [Google Scholar]
  40. Rufai A., Benjamin M., Ralphs J. R. The development of fibrocartilage in the rat intervertebral disc. Anat Embryol (Berl) 1995 Jul;192(1):53–62. doi: 10.1007/BF00186991. [DOI] [PubMed] [Google Scholar]
  41. Sakai L. Y., Keene D. R., Engvall E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol. 1986 Dec;103(6 Pt 1):2499–2509. doi: 10.1083/jcb.103.6.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schönherr E., Hausser H., Beavan L., Kresse H. Decorin-type I collagen interaction. Presence of separate core protein-binding domains. J Biol Chem. 1995 Apr 14;270(15):8877–8883. doi: 10.1074/jbc.270.15.8877. [DOI] [PubMed] [Google Scholar]
  43. Sobue M., Nakashima N., Fukatsu T., Nagasaka T., Katoh T., Ogura T., Takeuchi J. Production and characterization of monoclonal antibody to dermatan sulfate proteoglycan. J Histochem Cytochem. 1988 May;36(5):479–485. doi: 10.1177/36.5.3356894. [DOI] [PubMed] [Google Scholar]
  44. Sztrolovics R., Alini M., Mort J. S., Roughley P. J. Age-related changes in fibromodulin and lumican in human intervertebral discs. Spine (Phila Pa 1976) 1999 Sep 1;24(17):1765–1771. doi: 10.1097/00007632-199909010-00003. [DOI] [PubMed] [Google Scholar]
  45. Urban J. P., Roberts S. Development and degeneration of the intervertebral discs. Mol Med Today. 1995 Oct;1(7):329–335. doi: 10.1016/s1357-4310(95)80032-8. [DOI] [PubMed] [Google Scholar]
  46. Visco D. M., Johnstone B., Hill M. A., Jolly G. A., Caterson B. Immunohistochemical analysis of 3-B-(-) and 7-D-4 epitope expression in canine osteoarthritis. Arthritis Rheum. 1993 Dec;36(12):1718–1725. doi: 10.1002/art.1780361211. [DOI] [PubMed] [Google Scholar]
  47. Wu J. J., Eyre D. R., Slayter H. S. Type VI collagen of the intervertebral disc. Biochemical and electron-microscopic characterization of the native protein. Biochem J. 1987 Dec 1;248(2):373–381. doi: 10.1042/bj2480373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zimmermann D. R., Dours-Zimmermann M. T., Schubert M., Bruckner-Tuderman L. Versican is expressed in the proliferating zone in the epidermis and in association with the elastic network of the dermis. J Cell Biol. 1994 Mar;124(5):817–825. doi: 10.1083/jcb.124.5.817. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES