Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Jan;198(Pt 1):67–75. doi: 10.1046/j.1469-7580.2001.19810067.x

Glial fibrillary acidic protein and vimentin immunoreactivity of astroglial cells in the central nervous system of adult Podarcis sicula (Squamata, Lacertidae)

MAURIZIO LAZZARI 1,, VALERIA FRANCESCHINI 1
PMCID: PMC1468192  PMID: 11215769

Abstract

The present immunoperoxidase cytochemical study describes the distribution of glial intermediate filament molecular markers, glial fibrillary acidic protein (GFAP) and vimentin, in the brain and spinal cord of the adult lizard, Podarcis sicula. GFAP immunoreactivity is abundant and the positive structures are mainly represented by fibres of different lengths which are arranged in a rather regular radial pattern throughout the CNS. They emerge from generally immunopositive radial ependymoglia and are directed from the ventricular wall towards the meningeal surface. The glial fibres give origin to endfeet which are apposed to the blood vessel walls and subpial surface where they form the continous perivascular and subpial glia envelopes, respectively. In the optic tectum and spinal cord, star-shaped astrocytes coexist with radial glia. In the spinal cord, cell bodies of immunopositive radial glia are displaced from the ependyma. While vimentin immunoreactive elements are almost completely absent in the brain except for a few diencephalic radial fibres, the spinal cord ependyma exhibits a clearly vimentin positivity and no GFAP staining. In the Podarcis CNS the immunocytochemical response of the astroglial intermediate filaments appears typical of mature astroglia cell lineage since it fundamentally expresses GFAP immunoreactivity. Moreover, this immunocytochemical study shows that the Podarcis fibre pattern with predominant radial glial cells is morphologically more immature than in avians and mammalians, a condition suggesting that reptiles represent a fundamental step in the phylogenetic evolution of vertebrate astroglial cells.

Keywords: Reptiles, intermediate filaments, radial glia

Full Text

The Full Text of this article is available as a PDF (682.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. C. Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem. 1981 Jun;29(6):775–775. doi: 10.1177/29.6.7252134. [DOI] [PubMed] [Google Scholar]
  2. Alvarez-Buylla A., Buskirk D. R., Nottebohm F. Monoclonal antibody reveals radial glia in adult avian brain. J Comp Neurol. 1987 Oct 8;264(2):159–170. doi: 10.1002/cne.902640203. [DOI] [PubMed] [Google Scholar]
  3. Bennett G. S., Fellini S. A., Holtzer H. Immunofluorescent visualization of 100 A filaments in different cultured chick embryo cell types. Differentiation. 1978;12(2):71–82. doi: 10.1111/j.1432-0436.1979.tb00992.x. [DOI] [PubMed] [Google Scholar]
  4. Bodega G., Suárez I., Rubio M., Fernández B. Distribution and characteristics of the different astroglial cell types in the adult lizard (Lacerta lepida) spinal cord. Anat Embryol (Berl) 1990;181(6):567–575. doi: 10.1007/BF00174628. [DOI] [PubMed] [Google Scholar]
  5. Bodega G., Suárez I., Rubio M., Fernández B. Ependyma: phylogenetic evolution of glial fibrillary acidic protein (GFAP) and vimentin expression in vertebrate spinal cord. Histochemistry. 1994 Aug;102(2):113–122. doi: 10.1007/BF00269015. [DOI] [PubMed] [Google Scholar]
  6. Bodega G., Suárez I., Rubio M., Villalba R. M., Fernández B. Astroglial pattern in the spinal cord of the adult barbel (Barbus comiza). Anat Embryol (Berl) 1993 Apr;187(4):385–398. doi: 10.1007/BF00185897. [DOI] [PubMed] [Google Scholar]
  7. Cardone B., Roots B. I. Comparative immunohistochemical study of glial filament proteins (glial fibrillary acidic protein and vimentin) in goldfish, octopus, and snail. Glia. 1990;3(3):180–192. doi: 10.1002/glia.440030305. [DOI] [PubMed] [Google Scholar]
  8. Chouaf L., Didier-Bazes M., Aguera M., Tardy M., Sallanon M., Kitahama K., Belin M. F. Comparative marker analysis of the ependymocytes of the subcommissural organ in four different mammalian species. Cell Tissue Res. 1989 Aug;257(2):255–262. doi: 10.1007/BF00261828. [DOI] [PubMed] [Google Scholar]
  9. Dahl D., Bignami A. Immunochemical and immunofluorescence studies of the glial fibrillary acidic protein in vertebrates. Brain Res. 1973 Oct 26;61:279–293. doi: 10.1016/0006-8993(73)90533-7. [DOI] [PubMed] [Google Scholar]
  10. Dahl D., Bignami A. Intermediate filaments in nervous tissue. Cell Muscle Motil. 1985;6:75–96. doi: 10.1007/978-1-4757-4723-2_4. [DOI] [PubMed] [Google Scholar]
  11. Dahl D., Crosby C. J., Sethi J. S., Bignami A. Glial fibrillary acidic (GFA) protein in vertebrates: immunofluorescence and immunoblotting study with monoclonal and polyclonal antibodies. J Comp Neurol. 1985 Sep 1;239(1):75–88. doi: 10.1002/cne.902390107. [DOI] [PubMed] [Google Scholar]
  12. Ebner F. F., Colonnier M. Synaptic patterns in the visual cortex of turtle: an electron microscopic study. J Comp Neurol. 1975 Mar 1;160(1):51–79. doi: 10.1002/cne.901600105. [DOI] [PubMed] [Google Scholar]
  13. Elmquist J. K., Swanson J. J., Sakaguchi D. S., Ross L. R., Jacobson C. D. Developmental distribution of GFAP and vimentin in the Brazilian opossum brain. J Comp Neurol. 1994 Jun 8;344(2):283–296. doi: 10.1002/cne.903440209. [DOI] [PubMed] [Google Scholar]
  14. Kálmán M., Kiss A., Majorossy K. Distribution of glial fibrillary acidic protein-immunopositive structures in the brain of the red-eared freshwater turtle (Pseudemys scripta elegans). Anat Embryol (Berl) 1994 May;189(5):421–434. doi: 10.1007/BF00185437. [DOI] [PubMed] [Google Scholar]
  15. Kálmán M., Székely A. D., Csillag A. Distribution of glial fibrillary acidic protein and vimentin-immunopositive elements in the developing chicken brain from hatch to adulthood. Anat Embryol (Berl) 1998 Sep;198(3):213–235. doi: 10.1007/s004290050179. [DOI] [PubMed] [Google Scholar]
  16. Lauro G. M., Fonti R., Margotta V. Phylogenetic evolution of intermediate filament associated proteins in ependymal cells of several adult poikilotherm vertebrates. J Hirnforsch. 1991;32(2):257–261. [PubMed] [Google Scholar]
  17. Lazzari M., Franceschini V., Ciani F. Glial fibrillary acidic protein and vimentin in radial glia of Ambystoma mexicanum and Triturus carnifex: an immunocytochemical study. J Hirnforsch. 1997;38(2):187–194. [PubMed] [Google Scholar]
  18. Levitt P., Rakic P. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol. 1980 Oct 1;193(3):815–840. doi: 10.1002/cne.901930316. [DOI] [PubMed] [Google Scholar]
  19. Miller R. H., Liuzzi F. J. Regional specialization of the radial glial cells of the adult frog spinal cord. J Neurocytol. 1986 Apr;15(2):187–196. doi: 10.1007/BF01611655. [DOI] [PubMed] [Google Scholar]
  20. Monzon-Mayor M., Yanes C., Ghandour M. S., de Barry J., Gombos G. Glial fibrillary acidic protein and vimentin immunohistochemistry in the developing and adult midbrain of the lizard Gallotia galloti. J Comp Neurol. 1990 May 22;295(4):569–579. doi: 10.1002/cne.902950406. [DOI] [PubMed] [Google Scholar]
  21. Monzón-Mayor M., Yanes C., De Barry J., Capdevilla-Carbonell C., Renau-Piqueras J., Tholey G., Gombos G. Heterogeneous immunoreactivity of glial cells in the mesencephalon of a lizard: a double labeling immunohistochemical study. J Morphol. 1998 Feb;235(2):109–119. doi: 10.1002/(SICI)1097-4687(199802)235:2<109::AID-JMOR2>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  22. Onteniente B., Kimura H., Maeda T. Comparative study of the glial fibrillary acidic protein in vertebrates by PAP immunohistochemistry. J Comp Neurol. 1983 Apr 20;215(4):427–436. doi: 10.1002/cne.902150407. [DOI] [PubMed] [Google Scholar]
  23. Oudega M., Marani E. Expression of vimentin and glial fibrillary acidic protein in the developing rat spinal cord: an immunocytochemical study of the spinal cord glial system. J Anat. 1991 Dec;179:97–114. [PMC free article] [PubMed] [Google Scholar]
  24. Pixley S. K., de Vellis J. Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Brain Res. 1984 Aug;317(2):201–209. doi: 10.1016/0165-3806(84)90097-x. [DOI] [PubMed] [Google Scholar]
  25. Pulido-Caballero J., Jiménez-Sampedro F., Echevarría-Aza D., Martínez-Millán L. Postnatal development of vimentin-positive cells in the rabbit superior colliculus. J Comp Neurol. 1994 May 1;343(1):102–112. doi: 10.1002/cne.903430108. [DOI] [PubMed] [Google Scholar]
  26. Roessmann U., Velasco M. E., Sindely S. D., Gambetti P. Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study. Brain Res. 1980 Oct 27;200(1):13–21. doi: 10.1016/0006-8993(80)91090-2. [DOI] [PubMed] [Google Scholar]
  27. Rubio M., Suarez I., Bodega G., Fernandez B. Glial fibrillary acidic protein and vimentin immunohistochemistry in the posterior rhombencephalon of the Iberian barb (Barbus comiza). Neurosci Lett. 1992 Jan 6;134(2):203–206. doi: 10.1016/0304-3940(92)90517-b. [DOI] [PubMed] [Google Scholar]
  28. Szaro B. G., Gainer H. Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system. Brain Res. 1988 Oct 1;471(2):207–224. doi: 10.1016/0165-3806(88)90100-9. [DOI] [PubMed] [Google Scholar]
  29. Tapscott S. J., Bennett G. S., Toyama Y., Kleinbart F., Holtzer H. Intermediate filament proteins in the developing chick spinal cord. Dev Biol. 1981 Aug;86(1):40–54. doi: 10.1016/0012-1606(81)90313-4. [DOI] [PubMed] [Google Scholar]
  30. Voigt T. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol. 1989 Nov 1;289(1):74–88. doi: 10.1002/cne.902890106. [DOI] [PubMed] [Google Scholar]
  31. Wasowicz M., Pierre J., Repérant J., Ward R., Vesselkin N. P., Versaux-Botteri C. Immunoreactivity to glial fibrillary acid protein (GFAP) in the brain and spinal cord of the lamprey (Lampetra fluviatilis). J Hirnforsch. 1994;35(1):71–78. [PubMed] [Google Scholar]
  32. Wicht H., Derouiche A., Korf H. W. An immunocytochemical investigation of glial morphology in the Pacific hagfish: radial and astrocyte-like glia have the same phylogenetic age. J Neurocytol. 1994 Sep;23(9):565–576. doi: 10.1007/BF01262057. [DOI] [PubMed] [Google Scholar]
  33. Yamada T., Kawamata T., Walker D. G., McGeer P. L. Vimentin immunoreactivity in normal and pathological human brain tissue. Acta Neuropathol. 1992;84(2):157–162. doi: 10.1007/BF00311389. [DOI] [PubMed] [Google Scholar]
  34. Yanes C., Monzon-Mayor M., Ghandour M. S., de Barry J., Gombos G. Radial glia and astrocytes in developing and adult telencephalon of the lizard Gallotia galloti as revealed by immunohistochemistry with anti-GFAP and anti-vimentin antibodies. J Comp Neurol. 1990 May 22;295(4):559–568. doi: 10.1002/cne.902950405. [DOI] [PubMed] [Google Scholar]
  35. Zamora A. J., Mutin M. Vimentin and glial fibrillary acidic protein filaments in radial glia of the adult urodele spinal cord. Neuroscience. 1988 Oct;27(1):279–288. doi: 10.1016/0306-4522(88)90237-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES