Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Feb;198(Pt 2):223–228. doi: 10.1046/j.1469-7580.2001.19820223.x

Fibrocartilage in the transverse ligament of the human acetabulum

STEFAN MILZ 1 ,, GEORGIOS VALASSIS 1 , ANDREAS BÜTTNER 2 , MARKUS MAIER 3 , REINHARD PUTZ 1 , JAMES R RALPHS 4 , MICHAEL BENJAMIN 4
PMCID: PMC1468208  PMID: 11273046

Abstract

Biomechanical experiments on isolated hip joints have suggested that the transverse ligament acts as a bridle for the lunate articular surface of the acetabulum during load bearing, but there are inherent limitations in such studies because the specimens are fixed artificially to testing devices and there are no modifying influences of muscle pull. Further evidence is thus needed to substantiate the theory. Here we argue that if the horns of the lunate surface are forced apart under load, the ligament would straighten and become compressed against the femoral head. It would thus be expected to share some of the features of tendons and ligaments that wrap around bony pulleys and yet previous work has suggested that the transverse ligament is purely fibrous. Transverse ligaments were removed from 8 cadavers (aged 17–39 y) and fixed in 90% methanol. Cryosections were immunolabelled with antibodies against collagens (types I, II, III, VI), glycosaminoglycans (chondroitins 4 and 6 sulphate, dermatan sulphate, keratan sulphate) and proteoglycans (aggrecan, link protein, versican, tenascin). A small sesamoid fibrocartilage was consistently present in the centre of each transverse ligament, near its inner surface at the site where it faced the femoral head. Additionally, a more prominent enthesis fibrocartilage was found at both bony attachments. All fibrocartilage regions, in at least some specimens, labelled for type II collagen, chondroitin 6 sulphate, aggrecan and link protein, molecules more typically associated with articular cartilage. The results suggest that the ligament should be classed as containing a ‘moderately cartilaginous’ sesamoid fibrocartilage, adapted to withstanding compression. This supports the inferences that can be drawn from previous biomechanical studies. We cannot give any quantitative estimate of the levels of compression experienced. All that can be said is that the ligament occupies an intermediate position in the spectrum of fibrocartilaginous tissues. It is more cartilaginous than some wrap-around tendons at the wrist, but less cartilaginous than certain other wrap-around ligaments, e.g. the transverse ligament of the atlas.

Keywords: Entheses, collagens, glycosaminoglycans, proteoglycans, aggrecan

Full Text

The Full Text of this article is available as a PDF (295.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benjamin M., Evans E. J., Copp L. The histology of tendon attachments to bone in man. J Anat. 1986 Dec;149:89–100. [PMC free article] [PubMed] [Google Scholar]
  2. Benjamin M., Qin S., Ralphs J. R. Fibrocartilage associated with human tendons and their pulleys. J Anat. 1995 Dec;187(Pt 3):625–633. [PMC free article] [PubMed] [Google Scholar]
  3. Benjamin M., Ralphs J. R. Fibrocartilage in tendons and ligaments--an adaptation to compressive load. J Anat. 1998 Nov;193(Pt 4):481–494. doi: 10.1046/j.1469-7580.1998.19340481.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benjamin M., Ralphs J. R. Tendons and ligaments--an overview. Histol Histopathol. 1997 Oct;12(4):1135–1144. [PubMed] [Google Scholar]
  5. Berenson M. C., Blevins F. T., Plaas A. H., Vogel K. G. Proteoglycans of human rotator cuff tendons. J Orthop Res. 1996 Jul;14(4):518–525. doi: 10.1002/jor.1100140404. [DOI] [PubMed] [Google Scholar]
  6. Calabro A., Hascall V. C., Caterson B. Monoclonal antibodies directed against epitopes within the core protein structure of the large aggregating proteoglycan (aggrecan) from the swarm rat chondrosarcoma. Arch Biochem Biophys. 1992 Nov 1;298(2):349–360. doi: 10.1016/0003-9861(92)90421-r. [DOI] [PubMed] [Google Scholar]
  7. Caterson B., Christner J. E., Baker J. R., Couchman J. R. Production and characterization of monoclonal antibodies directed against connective tissue proteoglycans. Fed Proc. 1985 Feb;44(2):386–393. [PubMed] [Google Scholar]
  8. Caterson B., Christner J. E., Baker J. R. Identification of a monoclonal antibody that specifically recognizes corneal and skeletal keratan sulfate. Monoclonal antibodies to cartilage proteoglycan. J Biol Chem. 1983 Jul 25;258(14):8848–8854. [PubMed] [Google Scholar]
  9. Eckstein F., von Eisenhart-Rothe R., Landgraf J., Adam C., Loehe F., Müller-Gerbl M., Putz R. Quantitative analysis of incongruity, contact areas and cartilage thickness in the human hip joint. Acta Anat (Basel) 1997;158(3):192–204. doi: 10.1159/000147930. [DOI] [PubMed] [Google Scholar]
  10. Evans E. J., Benjamin M., Pemberton D. J. Fibrocartilage in the attachment zones of the quadriceps tendon and patellar ligament of man. J Anat. 1990 Aug;171:155–162. [PMC free article] [PubMed] [Google Scholar]
  11. Hessle H., Engvall E. Type VI collagen. Studies on its localization, structure, and biosynthetic form with monoclonal antibodies. J Biol Chem. 1984 Mar 25;259(6):3955–3961. [PubMed] [Google Scholar]
  12. Holmdahl R., Rubin K., Klareskog L., Larsson E., Wigzell H. Characterization of the antibody response in mice with type II collagen-induced arthritis, using monoclonal anti-type II collagen antibodies. Arthritis Rheum. 1986 Mar;29(3):400–410. doi: 10.1002/art.1780290314. [DOI] [PubMed] [Google Scholar]
  13. KNESE K. H., BIERMANN H. Die Knochenbildung an Sehnen- und Bandansătzen im Bereich ursprünglich chondraier Apophysen. Z Zellforsch Mikrosk Anat. 1958;49(2):142–187. [PubMed] [Google Scholar]
  14. Lazennec J. Y., Laudet C. G., Guérin-Surville H., Roy-Camille R., Saillant G. Dynamic anatomy of the acetabulum: an experimental approach and surgical implications. Surg Radiol Anat. 1997;19(1):23–30. doi: 10.1007/BF01627730. [DOI] [PubMed] [Google Scholar]
  15. Lewis A. R., Ralphs J. R., Kneafsey B., Benjamin M. Distribution of collagens and glycosaminoglycans in the joint capsule of the proximal interphalangeal joint of the human finger. Anat Rec. 1998 Mar;250(3):281–291. doi: 10.1002/(SICI)1097-0185(199803)250:3<281::AID-AR3>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  16. Löhe F., Eckstein F., Putz R. Die Beanspruchung des Ligamentum transversum acetabuli unter physiologischer Belastung des Hüftgelenks. Unfallchirurg. 1994 Sep;97(9):445–449. [PubMed] [Google Scholar]
  17. Löhe F., Eckstein F., Sauer T., Putz R. Structure, strain and function of the transverse acetabular ligament. Acta Anat (Basel) 1996;157(4):315–323. doi: 10.1159/000147894. [DOI] [PubMed] [Google Scholar]
  18. Malaviya P., Butler D. L., Boivin G. P., Smith F. N., Barry F. P., Murphy J. M., Vogel K. G. An in vivo model for load-modulated remodeling in the rabbit flexor tendon. J Orthop Res. 2000 Jan;18(1):116–125. doi: 10.1002/jor.1100180117. [DOI] [PubMed] [Google Scholar]
  19. Saldinger P., Dvorak J., Rahn B. A., Perren S. M. Histology of the alar and transverse ligaments. Spine (Phila Pa 1976) 1990 Apr;15(4):257–261. doi: 10.1097/00007632-199004000-00001. [DOI] [PubMed] [Google Scholar]
  20. Stofft E. Das Ligamentum transversum atlantis als funktionell-strukturierter Dens-Halteapparat. Anat Anz. 1968;123(2):157–168. [PubMed] [Google Scholar]
  21. Waggett A. D., Ralphs J. R., Kwan A. P., Woodnutt D., Benjamin M. Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon. Matrix Biol. 1998 Mar;16(8):457–470. doi: 10.1016/s0945-053x(98)90017-8. [DOI] [PubMed] [Google Scholar]
  22. von Eisenhart-Rothe R., Eckstein F., Müller-Gerbl M., Landgraf J., Rock C., Putz R. Direct comparison of contact areas, contact stress and subchondral mineralization in human hip joint specimens. Anat Embryol (Berl) 1997 Mar;195(3):279–288. doi: 10.1007/s004290050047. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES