Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Mar;198(Pt 3):257–264. doi: 10.1046/j.1469-7580.2000.19830257.x

Intracellular and extracellular regulation of ureteric bud morphogenesis

JAMIE DAVIES 1,
PMCID: PMC1468216  PMID: 11322719

Abstract

The urinary collecting duct system of the permanent kidney develops by growth and branching of an initially unbranched epithelial tubule, the ureteric bud. Formation of the ureteric bud as an outgrowth of the wolffian duct is induced by signalling molecules (such as GDNF) that emanate from the adjacent metanephrogenic mesenchyme. Once it has invaded the mesenchyme, growth and branching of the bud is controlled by a variety of molecules, such as the growth factors GDNF, HGF, TGFβ, activin, BMP-2, BMP-7, and matrix molecules such as heparan sulphate proteoglycans and laminins. These various influences are integrated by signal transduction systems inside ureteric bud cells, with the MAP kinase, protein kinase A and protein kinase C pathways appearing to play major roles. The mechanisms of morphogenetic change that produce branching remain largely obscure, but matrix metalloproteinases are known to be necessary for the process, and there is preliminary evidence for the involvement of the actin/myosin contractile cytoskeleton in creating branch points.

Keywords: Kidney, branching morphogenesis, induction, signal transduction

Full Text

The Full Text of this article is available as a PDF (236.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki T., Saruta T., Okano H., Miura M. Caspase activity is required for nephrogenesis in the developing mouse metanephros. Exp Cell Res. 1999 May 1;248(2):423–429. doi: 10.1006/excr.1999.4424. [DOI] [PubMed] [Google Scholar]
  2. Bullock S. L., Fletcher J. M., Beddington R. S., Wilson V. A. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev. 1998 Jun 15;12(12):1894–1906. doi: 10.1101/gad.12.12.1894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ciossek T., Millauer B., Ullrich A. Identification of alternatively spliced mRNAs encoding variants of MDK1, a novel receptor tyrosine kinase expressed in the murine nervous system. Oncogene. 1995 Jan 5;10(1):97–108. [PubMed] [Google Scholar]
  4. Davies J. A., Millar C. B., Johnson E. M., Jr, Milbrandt J. Neurturin: an autocrine regulator of renal collecting duct development. Dev Genet. 1999;24(3-4):284–292. doi: 10.1002/(SICI)1520-6408(1999)24:3/4<284::AID-DVG11>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  5. Davies J., Lyon M., Gallagher J., Garrod D. Sulphated proteoglycan is required for collecting duct growth and branching but not nephron formation during kidney development. Development. 1995 May;121(5):1507–1517. doi: 10.1242/dev.121.5.1507. [DOI] [PubMed] [Google Scholar]
  6. Dressler G. R., Deutsch U., Chowdhury K., Nornes H. O., Gruss P. Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development. 1990 Aug;109(4):787–795. doi: 10.1242/dev.109.4.787. [DOI] [PubMed] [Google Scholar]
  7. Dressler G. R., Douglass E. C. Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1179–1183. doi: 10.1073/pnas.89.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dudley A. T., Lyons K. M., Robertson E. J. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 1995 Nov 15;9(22):2795–2807. doi: 10.1101/gad.9.22.2795. [DOI] [PubMed] [Google Scholar]
  9. Fujii T., Pichel J. G., Taira M., Toyama R., Dawid I. B., Westphal H. Expression patterns of the murine LIM class homeobox gene lim1 in the developing brain and excretory system. Dev Dyn. 1994 Jan;199(1):73–83. doi: 10.1002/aja.1001990108. [DOI] [PubMed] [Google Scholar]
  10. George K. M., Leonard M. W., Roth M. E., Lieuw K. H., Kioussis D., Grosveld F., Engel J. D. Embryonic expression and cloning of the murine GATA-3 gene. Development. 1994 Sep;120(9):2673–2686. doi: 10.1242/dev.120.9.2673. [DOI] [PubMed] [Google Scholar]
  11. Gupta I. R., Piscione T. D., Grisaru S., Phan T., Macias-Silva M., Zhou X., Whiteside C., Wrana J. L., Rosenblum N. D. Protein kinase A is a negative regulator of renal branching morphogenesis and modulates inhibitory and stimulatory bone morphogenetic proteins. J Biol Chem. 1999 Sep 10;274(37):26305–26314. doi: 10.1074/jbc.274.37.26305. [DOI] [PubMed] [Google Scholar]
  12. Hacohen N., Kramer S., Sutherland D., Hiromi Y., Krasnow M. A. sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell. 1998 Jan 23;92(2):253–263. doi: 10.1016/s0092-8674(00)80919-8. [DOI] [PubMed] [Google Scholar]
  13. Hatini V., Huh S. O., Herzlinger D., Soares V. C., Lai E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev. 1996 Jun 15;10(12):1467–1478. doi: 10.1101/gad.10.12.1467. [DOI] [PubMed] [Google Scholar]
  14. Kispert A., Vainio S., Shen L., Rowitch D. H., McMahon A. P. Proteoglycans are required for maintenance of Wnt-11 expression in the ureter tips. Development. 1996 Nov;122(11):3627–3637. doi: 10.1242/dev.122.11.3627. [DOI] [PubMed] [Google Scholar]
  15. Korhonen M., Laitinen L., Ylänne J., Gould V. E., Virtanen I. Integrins in developing, normal and malignant human kidney. Kidney Int. 1992 Mar;41(3):641–644. doi: 10.1038/ki.1992.98. [DOI] [PubMed] [Google Scholar]
  16. Korhonen M., Ylänne J., Laitinen L., Virtanen I. The alpha 1-alpha 6 subunits of integrins are characteristically expressed in distinct segments of developing and adult human nephron. J Cell Biol. 1990 Sep;111(3):1245–1254. doi: 10.1083/jcb.111.3.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kreidberg J. A., Donovan M. J., Goldstein S. L., Rennke H., Shepherd K., Jones R. C., Jaenisch R. Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development. 1996 Nov;122(11):3537–3547. doi: 10.1242/dev.122.11.3537. [DOI] [PubMed] [Google Scholar]
  18. Kreidberg J. A., Sariola H., Loring J. M., Maeda M., Pelletier J., Housman D., Jaenisch R. WT-1 is required for early kidney development. Cell. 1993 Aug 27;74(4):679–691. doi: 10.1016/0092-8674(93)90515-r. [DOI] [PubMed] [Google Scholar]
  19. Labastie M. C., Catala M., Gregoire J. M., Peault B. The GATA-3 gene is expressed during human kidney embryogenesis. Kidney Int. 1995 Jun;47(6):1597–1603. doi: 10.1038/ki.1995.223. [DOI] [PubMed] [Google Scholar]
  20. Lehnert S. A., Akhurst R. J. Embryonic expression pattern of TGF beta type-1 RNA suggests both paracrine and autocrine mechanisms of action. Development. 1988 Oct;104(2):263–273. doi: 10.1242/dev.104.2.263. [DOI] [PubMed] [Google Scholar]
  21. Lelongt B., Trugnan G., Murphy G., Ronco P. M. Matrix metalloproteinases MMP2 and MMP9 are produced in early stages of kidney morphogenesis but only MMP9 is required for renal organogenesis in vitro. J Cell Biol. 1997 Mar 24;136(6):1363–1373. doi: 10.1083/jcb.136.6.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lyons K. M., Hogan B. L., Robertson E. J. Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech Dev. 1995 Mar;50(1):71–83. doi: 10.1016/0925-4773(94)00326-i. [DOI] [PubMed] [Google Scholar]
  23. Maas R., Elfering S., Glaser T., Jepeal L. Deficient outgrowth of the ureteric bud underlies the renal agenesis phenotype in mice manifesting the limb deformity (ld) mutation. Dev Dyn. 1994 Mar;199(3):214–228. doi: 10.1002/aja.1001990306. [DOI] [PubMed] [Google Scholar]
  24. Mendelsohn C., Batourina E., Fung S., Gilbert T., Dodd J. Stromal cells mediate retinoid-dependent functions essential for renal development. Development. 1999 Mar;126(6):1139–1148. doi: 10.1242/dev.126.6.1139. [DOI] [PubMed] [Google Scholar]
  25. Moore M. W., Klein R. D., Fariñas I., Sauer H., Armanini M., Phillips H., Reichardt L. F., Ryan A. M., Carver-Moore K., Rosenthal A. Renal and neuronal abnormalities in mice lacking GDNF. Nature. 1996 Jul 4;382(6586):76–79. doi: 10.1038/382076a0. [DOI] [PubMed] [Google Scholar]
  26. Müller U., Wang D., Denda S., Meneses J. J., Pedersen R. A., Reichardt L. F. Integrin alpha8beta1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell. 1997 Mar 7;88(5):603–613. doi: 10.1016/s0092-8674(00)81903-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nakanishi Y., Ishii T. Epithelial shape change in mouse embryonic submandibular gland: modulation by extracellular matrix components. Bioessays. 1989 Dec;11(6):163–167. doi: 10.1002/bies.950110602. [DOI] [PubMed] [Google Scholar]
  28. Pachnis V., Mankoo B., Costantini F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development. 1993 Dec;119(4):1005–1017. doi: 10.1242/dev.119.4.1005. [DOI] [PubMed] [Google Scholar]
  29. Pepicelli C. V., Kispert A., Rowitch D. H., McMahon A. P. GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev Biol. 1997 Dec 1;192(1):193–198. doi: 10.1006/dbio.1997.8745. [DOI] [PubMed] [Google Scholar]
  30. Pichel J. G., Shen L., Sheng H. Z., Granholm A. C., Drago J., Grinberg A., Lee E. J., Huang S. P., Saarma M., Hoffer B. J. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996 Jul 4;382(6586):73–76. doi: 10.1038/382073a0. [DOI] [PubMed] [Google Scholar]
  31. Qiao J., Cohen D., Herzlinger D. The metanephric blastema differentiates into collecting system and nephron epithelia in vitro. Development. 1995 Oct;121(10):3207–3214. doi: 10.1242/dev.121.10.3207. [DOI] [PubMed] [Google Scholar]
  32. Qiao J., Sakurai H., Nigam S. K. Branching morphogenesis independent of mesenchymal-epithelial contact in the developing kidney. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7330–7335. doi: 10.1073/pnas.96.13.7330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ritvos O., Tuuri T., Erämaa M., Sainio K., Hildén K., Saxén L., Gilbert S. F. Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech Dev. 1995 Apr;50(2-3):229–245. doi: 10.1016/0925-4773(94)00342-k. [DOI] [PubMed] [Google Scholar]
  34. Sainio K., Suvanto P., Davies J., Wartiovaara J., Wartiovaara K., Saarma M., Arumäe U., Meng X., Lindahl M., Pachnis V. Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development. 1997 Oct;124(20):4077–4087. doi: 10.1242/dev.124.20.4077. [DOI] [PubMed] [Google Scholar]
  35. Slack J. M. Embryonic induction. Mech Dev. 1993 May;41(2-3):91–107. doi: 10.1016/0925-4773(93)90040-5. [DOI] [PubMed] [Google Scholar]
  36. Sonnenberg E., Meyer D., Weidner K. M., Birchmeier C. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol. 1993 Oct;123(1):223–235. doi: 10.1083/jcb.123.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stevens C. F. A million dollar question: does LTP = memory? Neuron. 1998 Jan;20(1):1–2. doi: 10.1016/s0896-6273(00)80426-2. [DOI] [PubMed] [Google Scholar]
  38. THEILER K., GLUECKSOHN-WAELSCH S. The morphological effects and the development of the fused mutation in the mouse. Anat Rec. 1956 May;125(1):83–103. doi: 10.1002/ar.1091250107. [DOI] [PubMed] [Google Scholar]
  39. Tessarollo L., Nagarajan L., Parada L. F. c-ros: the vertebrate homolog of the sevenless tyrosine kinase receptor is tightly regulated during organogenesis in mouse embryonic development. Development. 1992 May;115(1):11–20. doi: 10.1242/dev.115.1.11. [DOI] [PubMed] [Google Scholar]
  40. Uehara Y., Minowa O., Mori C., Shiota K., Kuno J., Noda T., Kitamura N. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995 Feb 23;373(6516):702–705. doi: 10.1038/373702a0. [DOI] [PubMed] [Google Scholar]
  41. Vega Q. C., Worby C. A., Lechner M. S., Dixon J. E., Dressler G. R. Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10657–10661. doi: 10.1073/pnas.93.20.10657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Veis D. J., Sorenson C. M., Shutter J. R., Korsmeyer S. J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell. 1993 Oct 22;75(2):229–240. doi: 10.1016/0092-8674(93)80065-m. [DOI] [PubMed] [Google Scholar]
  43. Woolf A. S., Kolatsi-Joannou M., Hardman P., Andermarcher E., Moorby C., Fine L. G., Jat P. S., Noble M. D., Gherardi E. Roles of hepatocyte growth factor/scatter factor and the met receptor in the early development of the metanephros. J Cell Biol. 1995 Jan;128(1-2):171–184. doi: 10.1083/jcb.128.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES