Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Apr;198(Pt 4):463–472. doi: 10.1046/j.1469-7580.2001.19840463.x

The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase

SAFİYE ÇAVDAR 1 ,, FİLİZ ONAT 2 , REZZAN AKER 2 , ÜMİT ŞEHİRLİ 1 , TANGUL ŞAN 3 , HASAN RACİ YANANLI 2
PMCID: PMC1468232  PMID: 11327208

Abstract

The posterior hypothalamic nucleus has been implicated as an area controlling autonomic activity. The afferent input to the nucleus will provide evidence as to its role in autonomic function. In the present study, we aimed to identify the detailed anatomical projections to the posterior hypothalamic nucleus from cortical, subcortical and brainstem structures, using the horseradish peroxidase (HRP) retrograde axonal transport technique in the rat. Subsequent to the injection of HRP into the posterior hypothalamic nucleus, extensive cell labelling was observed bilaterally in various areas of the cerebral cortex including the cingulate, frontal, parietal and insular cortices. At subcortical levels, labelled cells were observed in the medial and lateral septal nuclei, the bed nucleus of stria terminalis, and various thalamic and amygdaloid nuclei. Also axons of the vertical and horizontal limbs of the diagonal band were labelled and labelled cells were localised at the CA1 and CA3 fields of the hippocampus and the dentate gyrus. The brainstem projections were from the medial, lateral and parasolitary nuclei, the intercalated nucleus of the medulla, the sensory nuclei of the trigeminal nerve, and various reticular, vestibular, raphe and central grey nuclei. The posterior hypothalamic nucleus also received projections from the lateral and medial cerebellar nuclei and from upper cervical spinal levels. The results are discussed in relation to the involvement of the posterior hypothalamic nucleus in autonomic function and allows a better understanding of how the brain controls visceral function.

Keywords: Hypothalamus, autonomic function

Full Text

The Full Text of this article is available as a PDF (560.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen G. V., Saper C. B., Hurley K. M., Cechetto D. F. Organization of visceral and limbic connections in the insular cortex of the rat. J Comp Neurol. 1991 Sep 1;311(1):1–16. doi: 10.1002/cne.903110102. [DOI] [PubMed] [Google Scholar]
  2. Basbaum A. I., Fields H. L. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci. 1984;7:309–338. doi: 10.1146/annurev.ne.07.030184.001521. [DOI] [PubMed] [Google Scholar]
  3. Blanchard D. C., Blanchard R. J. Innate and conditioned reactions to threat in rats with amygdaloid lesions. J Comp Physiol Psychol. 1972 Nov;81(2):281–290. doi: 10.1037/h0033521. [DOI] [PubMed] [Google Scholar]
  4. Buccafusco J. J., Brezenoff H. E. Pharmacological study of a cholinergic mechanism within the rat posterior hypothalamic nucleus which mediates a hypertensive response. Brain Res. 1979 Apr 13;165(2):295–310. doi: 10.1016/0006-8993(79)90561-4. [DOI] [PubMed] [Google Scholar]
  5. Cechetto D. F., Chen S. J. Subcortical sites mediating sympathetic responses from insular cortex in rats. Am J Physiol. 1990 Jan;258(1 Pt 2):R245–R255. doi: 10.1152/ajpregu.1990.258.1.R245. [DOI] [PubMed] [Google Scholar]
  6. Chida K., Iadecola C., Underwood M. D., Reis D. J. A novel vasodepressor response elicited from the rat cerebellar fastigial nucleus: the fastigial depressor response. Brain Res. 1986 Apr 9;370(2):378–382. doi: 10.1016/0006-8993(86)90498-1. [DOI] [PubMed] [Google Scholar]
  7. Cohen D. H. Involvement of the avian amygdalar homologue (archistriatum posterior and mediale) in defensively conditioned heart rate change. J Comp Neurol. 1975 Mar 1;160(1):13–35. doi: 10.1002/cne.901600103. [DOI] [PubMed] [Google Scholar]
  8. Dietrichs E. Cerebellar autonomic function: direct hypothalamocerebellar pathway. Science. 1984 Feb 10;223(4636):591–593. doi: 10.1126/science.6198719. [DOI] [PubMed] [Google Scholar]
  9. Dietrichs E., Haines D. E. Demonstration of hypothalamo-cerebellar and cerebello-hypothalamic fibres in a prosimian primate (Galago crassicaudatus). Anat Embryol (Berl) 1984;170(3):313–318. doi: 10.1007/BF00318735. [DOI] [PubMed] [Google Scholar]
  10. Eferakeya A., Buñag R. D. Adrenomedullary pressor responses during posterior hypothalamic stimulation. Am J Physiol. 1974 Jul;227(1):114–118. doi: 10.1152/ajplegacy.1974.227.1.114. [DOI] [PubMed] [Google Scholar]
  11. HOFF E. C., KELL J. F., Jr, CARROLL M. N., Jr Effects of cortical stimulation and lesions on cardiovascular function. Physiol Rev. 1963 Jan;43:68–114. doi: 10.1152/physrev.1963.43.1.68. [DOI] [PubMed] [Google Scholar]
  12. Haines D. E., Dietrichs E., Sowa T. E. Hypothalamo-cerebellar and cerebello-hypothalamic pathways: a review and hypothesis concerning cerebellar circuits which may influence autonomic centers affective behavior. Brain Behav Evol. 1984;24(4):198–220. doi: 10.1159/000121317. [DOI] [PubMed] [Google Scholar]
  13. Haines D. E., May P. J., Dietrichs E. Neuronal connections between the cerebellar nuclei and hypothalamus in Macaca fascicularis: cerebello-visceral circuits. J Comp Neurol. 1990 Sep 1;299(1):106–122. doi: 10.1002/cne.902990108. [DOI] [PubMed] [Google Scholar]
  14. Haines D. E., Sowa T. E., Dietrichs E. Connections between the cerebellum and hypothalamus in the tree shrew (Tupaia glis). Brain Res. 1985 Mar 4;328(2):367–373. doi: 10.1016/0006-8993(85)91051-0. [DOI] [PubMed] [Google Scholar]
  15. Herbert H., Moga M. M., Saper C. B. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol. 1990 Mar 22;293(4):540–580. doi: 10.1002/cne.902930404. [DOI] [PubMed] [Google Scholar]
  16. Hörster W., Ettlinger G. Unilateral removal of the posterior insula or of area SII: inconsistent effects on tactile, visual and auditory performance in the monkey. Behav Brain Res. 1987 Oct;26(1):1–17. doi: 10.1016/0166-4328(87)90011-8. [DOI] [PubMed] [Google Scholar]
  17. Kitahama K., Sakai K., Tago H., Kimura H., Maeda T., Jouvet M. Monoamine oxidase-containing neurons in the cat hypothalamus: distribution and ascending projection to the cerebral cortex. Brain Res. 1984 Dec 17;324(1):155–159. doi: 10.1016/0006-8993(84)90635-8. [DOI] [PubMed] [Google Scholar]
  18. Mantyh P. W. Forebrain projections to the periaqueductal gray in the monkey, with observations in the cat and rat. J Comp Neurol. 1982 Apr 1;206(2):146–158. doi: 10.1002/cne.902060205. [DOI] [PubMed] [Google Scholar]
  19. Martin J. R. Pressor response to posterior hypothalamic administration of carbachol is mediated by muscarinic M3 receptor. Eur J Pharmacol. 1992 Apr 29;215(1):83–91. doi: 10.1016/0014-2999(92)90612-8. [DOI] [PubMed] [Google Scholar]
  20. McAllen R. M., Dampney R. A. The selectivity of descending vasomotor control by subretrofacial neurons. Prog Brain Res. 1989;81:233–242. doi: 10.1016/s0079-6123(08)62013-0. [DOI] [PubMed] [Google Scholar]
  21. McAllen R. M., Dampney R. A. Vasomotor neurons in the rostral ventrolateral medulla are organized topographically with respect to type of vascular bed but not body region. Neurosci Lett. 1990 Mar 2;110(1-2):91–96. doi: 10.1016/0304-3940(90)90793-9. [DOI] [PubMed] [Google Scholar]
  22. Mesulam M. M. Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem. 1978 Feb;26(2):106–117. doi: 10.1177/26.2.24068. [DOI] [PubMed] [Google Scholar]
  23. Miura M., Onai T., Takayama K. Projections of upper structure to the spinal cardioacceleratory center in cats: an HRP study using a new microinjection method. J Auton Nerv Syst. 1983 Feb;7(2):119–139. doi: 10.1016/0165-1838(83)90041-3. [DOI] [PubMed] [Google Scholar]
  24. Nomokonova L. M., Ozirskaya E. V. Morphological study of middle and posterior hypothalamic projections to forebrain in the pond turtle. Neurosci Behav Physiol. 1984 Jul-Aug;14(4):282–290. doi: 10.1007/BF01149612. [DOI] [PubMed] [Google Scholar]
  25. Sakai K., Yoshimoto Y., Luppi P. H., Fort P., el Mansari M., Salvert D., Jouvet M. Lower brainstem afferents to the cat posterior hypothalamus: a double-labeling study. Brain Res Bull. 1990 Mar;24(3):437–455. doi: 10.1016/0361-9230(90)90098-k. [DOI] [PubMed] [Google Scholar]
  26. Saper C. B., Loewy A. D. Efferent connections of the parabrachial nucleus in the rat. Brain Res. 1980 Sep 22;197(2):291–317. doi: 10.1016/0006-8993(80)91117-8. [DOI] [PubMed] [Google Scholar]
  27. Shapiro R. E., Miselis R. R. The central neural connections of the area postrema of the rat. J Comp Neurol. 1985 Apr 15;234(3):344–364. doi: 10.1002/cne.902340306. [DOI] [PubMed] [Google Scholar]
  28. Stanfield B. B., Cowan W. M. An EM autoradiographic study of the hypothalamo-hippocampal projection. Brain Res. 1984 Sep 10;309(2):299–307. doi: 10.1016/0006-8993(84)90596-1. [DOI] [PubMed] [Google Scholar]
  29. Strack A. M., Sawyer W. B., Marubio L. M., Loewy A. D. Spinal origin of sympathetic preganglionic neurons in the rat. Brain Res. 1988 Jul 5;455(1):187–191. doi: 10.1016/0006-8993(88)90132-1. [DOI] [PubMed] [Google Scholar]
  30. Swanson L. W., Cowan W. M. The connections of the septal region in the rat. J Comp Neurol. 1979 Aug 15;186(4):621–655. doi: 10.1002/cne.901860408. [DOI] [PubMed] [Google Scholar]
  31. Tan E., Dampney R. A. Cardiovascular effects of stimulation of neurones within the 'defence area' of the hypothalamus and midbrain of the rabbit. Clin Exp Pharmacol Physiol. 1983 May-Jun;10(3):299–303. doi: 10.1111/j.1440-1681.1983.tb00201.x. [DOI] [PubMed] [Google Scholar]
  32. Timms R. J. A study of the amygdaloid defence reaction showing the value of Althesin anaesthesia in studies of the functions of the fore-brain in cats. Pflugers Arch. 1981 Jul;391(1):49–56. doi: 10.1007/BF00580694. [DOI] [PubMed] [Google Scholar]
  33. Veazey R. B., Amaral D. G., Cowan W. M. The morphology and connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). II. Efferent connections. J Comp Neurol. 1982 May 10;207(2):135–156. doi: 10.1002/cne.902070204. [DOI] [PubMed] [Google Scholar]
  34. Waldrop T. G., Bauer R. M., Iwamoto G. A. Microinjection of GABA antagonists into the posterior hypothalamus elicits locomotor activity and a cardiorespiratory activation. Brain Res. 1988 Mar 15;444(1):84–94. doi: 10.1016/0006-8993(88)90916-x. [DOI] [PubMed] [Google Scholar]
  35. Wouterlood F. G., Steinbusch H. W., Luiten P. G., Bol J. G. Projection from the prefrontal cortex to histaminergic cell groups in the posterior hypothalamic region of the rat. Anterograde tracing with Phaseolus vulgaris leucoagglutinin combined with immunocytochemistry of histidine decarboxylase. Brain Res. 1987 Mar 17;406(1-2):330–336. doi: 10.1016/0006-8993(87)90802-x. [DOI] [PubMed] [Google Scholar]
  36. Yardley C. P., Hilton S. M. The hypothalamic and brainstem areas from which the cardiovascular and behavioural components of the defence reaction are elicited in the rat. J Auton Nerv Syst. 1986 Mar;15(3):227–244. doi: 10.1016/0165-1838(86)90066-4. [DOI] [PubMed] [Google Scholar]
  37. Yasui Y., Breder C. D., Saper C. B., Cechetto D. F. Autonomic responses and efferent pathways from the insular cortex in the rat. J Comp Neurol. 1991 Jan 15;303(3):355–374. doi: 10.1002/cne.903030303. [DOI] [PubMed] [Google Scholar]
  38. Zheng Z. H., Dietrichs E., Walberg F. Cerebellar afferent fibres from the dorsal motor vagal nucleus in the cat. Neurosci Lett. 1982 Oct 8;32(2):113–118. doi: 10.1016/0304-3940(82)90259-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES