Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 May;198(Pt 5):555–559. doi: 10.1046/j.1469-7580.2001.19850555.x

Differences between human and mouse alpha-fetoprotein expression during early development

ELIZABETH A JONES 1 ,2 ,, MARK CLEMENT-JONES 3 , OLIVER F W JAMES 2 , DAVID I WILSON 1 ,2 ,*
PMCID: PMC1468244  PMID: 11430694

Abstract

Alpha-fetoprotein (AFP) is the major serum protein during development. AFP is one of the earliest proteins to be synthesised by the embryonic liver. The synthesis of AFP decreases dramatically after birth and only trace amounts are expressed in the adult liver. The tissue distribution of AFP in early human embryogenesis has not been defined. We have studied the expression pattern of AFP mRNA in human and mouse embryos by in situ hybridisation. In humans, AFP is expressed in the hepatic diverticulum at 26 d postovulation as it differentiates from the foregut endoderm (i.e. in the most primitive hepatocytes). It is also expressed in the endoderm of the gastrointestinal tract and in the yolk sac at this age. AFP is subsequently expressed in the mesonephros and transiently in the developing pancreas. In the mouse, no expression of AFP was observed in the mesonephros but other sites of expression were similar. Thus AFP has a distinct temporospatial expression pattern during the embryonic period and this differs between human and mouse species. It is interesting that AFP is expressed by tumours such as primitive gastrointestinal, renal cell and pancreatic tumours as well as those of hepatocyte origin. This distribution reflects the sites of AFP expression during development.

Keywords: Hepatic development, mesonephros

Full Text

The Full Text of this article is available as a PDF (281.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABELEV G. I. Study of the antigenic structure of tumors. Acta Unio Int Contra Cancrum. 1963;19:80–82. [PubMed] [Google Scholar]
  2. Abelev G. I., Eraiser T. L. Cellular aspects of alpha-fetoprotein reexpression in tumors. Semin Cancer Biol. 1999 Apr;9(2):95–107. doi: 10.1006/scbi.1998.0084. [DOI] [PubMed] [Google Scholar]
  3. Antohe F., Dobrila L., Heltianu C., Simionescu N., Simionescu M. Albumin-binding proteins function in the receptor-mediated binding and transcytosis of albumin across cultured endothelial cells. Eur J Cell Biol. 1993 Apr;60(2):268–275. [PubMed] [Google Scholar]
  4. BERGSTRAND C. G., CZAR B. Demonstration of a new protein fraction in serum from the human fetus. Scand J Clin Lab Invest. 1956;8(2):174–174. doi: 10.3109/00365515609049266. [DOI] [PubMed] [Google Scholar]
  5. Chen H., Egan J. O., Chiu J. F. Regulation and activities of alpha-fetoprotein. Crit Rev Eukaryot Gene Expr. 1997;7(1-2):11–41. doi: 10.1615/critreveukargeneexpr.v7.i1-2.20. [DOI] [PubMed] [Google Scholar]
  6. Cote G. J., Chiu J. F. Tissue specific control of alpha-fetoprotein gene expression. Biochem Biophys Res Commun. 1984 Apr 30;120(2):677–685. doi: 10.1016/0006-291x(84)91309-3. [DOI] [PubMed] [Google Scholar]
  7. Dingemanse M. A., Lamers W. H. Expression patterns of ammonia-metabolizing enzymes in the liver, mesonephros, and gut of human embryos and their possible implications. Anat Rec. 1994 Apr;238(4):480–490. doi: 10.1002/ar.1092380407. [DOI] [PubMed] [Google Scholar]
  8. Gibbs P. E., Witke W. F., Dugaiczyk A. The molecular clock runs at different rates among closely related members of a gene family. J Mol Evol. 1998 May;46(5):552–561. doi: 10.1007/pl00006336. [DOI] [PubMed] [Google Scholar]
  9. Gitlin D., Biasucci A. Development of gamma G, gamma A, gamma M, beta IC-beta IA, C 1 esterase inhibitor, ceruloplasmin, transferrin, hemopexin, haptoglobin, fibrinogen, plasminogen, alpha 1-antitrypsin, orosomucoid, beta-lipoprotein, alpha 2-macroglobulin, and prealbumin in the human conceptus. J Clin Invest. 1969 Aug;48(8):1433–1446. doi: 10.1172/JCI106109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gitlin D., Perricelli A., Gitlin G. M. Synthesis of -fetoprotein by liver, yolk sac, and gastrointestinal tract of the human conceptus. Cancer Res. 1972 May;32(5):979–982. [PubMed] [Google Scholar]
  11. Gualdi R., Bossard P., Zheng M., Hamada Y., Coleman J. R., Zaret K. S. Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev. 1996 Jul 1;10(13):1670–1682. doi: 10.1101/gad.10.13.1670. [DOI] [PubMed] [Google Scholar]
  12. Hanley N. A., Ball S. G., Clement-Jones M., Hagan D. M., Strachan T., Lindsay S., Robson S., Ostrer H., Parker K. L., Wilson D. I. Expression of steroidogenic factor 1 and Wilms' tumour 1 during early human gonadal development and sex determination. Mech Dev. 1999 Sep;87(1-2):175–180. doi: 10.1016/s0925-4773(99)00123-9. [DOI] [PubMed] [Google Scholar]
  13. Ishizaki A., Koito K., Namieno T., Nagakawa T., Murashima Y., Suga T. Acinar cell carcinoma of the pancreas: a rare case of an alpha-fetoprotein-producing cystic tumor. Eur J Radiol. 1995 Nov;21(1):58–60. doi: 10.1016/0720-048x(95)00676-h. [DOI] [PubMed] [Google Scholar]
  14. Jung J., Zheng M., Goldfarb M., Zaret K. S. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science. 1999 Jun 18;284(5422):1998–2003. doi: 10.1126/science.284.5422.1998. [DOI] [PubMed] [Google Scholar]
  15. Mackiewicz A., Breborowicz J. The in vitro production of alpha--fetoprotein variants by human fetal organs. Oncodev Biol Med. 1980;1(4-5):251–261. [PubMed] [Google Scholar]
  16. McIntire K. R., Waldmann T. A., Moertel C. G., Go V. L. Serum alpha-fetoprotein in patients with neoplasms of the gastrointestinal tract. Cancer Res. 1975 Apr;35(4):991–996. [PubMed] [Google Scholar]
  17. Minamoto T., Kitagawa M., Amano N., Tsukada Y., Hirose T., Mai M. Renal cell carcinoma producing alpha-fetoprotein (AFP) with a unique lectins-affinity profile. J Surg Oncol. 1994 Apr;55(4):215–221. doi: 10.1002/jso.2930550404. [DOI] [PubMed] [Google Scholar]
  18. Mizejewski G. J. Alpha-fetoprotein binding proteins: implications for transmembrane passage and subcellular localization. Life Sci. 1995;56(1):1–9. doi: 10.1016/0024-3205(94)00401-d. [DOI] [PubMed] [Google Scholar]
  19. Moritz K. M., Wintour E. M. Functional development of the meso- and metanephros. Pediatr Nephrol. 1999 Feb;13(2):171–178. doi: 10.1007/s004670050587. [DOI] [PubMed] [Google Scholar]
  20. Ross H. L., Elias S. Maternal serum screening for fetal genetic disorders. Obstet Gynecol Clin North Am. 1997 Mar;24(1):33–47. doi: 10.1016/s0889-8545(05)70288-6. [DOI] [PubMed] [Google Scholar]
  21. Suzuki Y., Zeng C. Q., Alpert E. Isolation and partial characterization of a specific alpha-fetoprotein receptor on human monocytes. J Clin Invest. 1992 Oct;90(4):1530–1536. doi: 10.1172/JCI116021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tyner A. L., Godbout R., Compton R. S., Tilghman S. M. The ontogeny of alpha-fetoprotein gene expression in the mouse gastrointestinal tract. J Cell Biol. 1990 Apr;110(4):915–927. doi: 10.1083/jcb.110.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zaret K. S. Liver specification and early morphogenesis. Mech Dev. 2000 Mar 15;92(1):83–88. doi: 10.1016/s0925-4773(99)00326-3. [DOI] [PubMed] [Google Scholar]
  24. Zaret K. S. Molecular genetics of early liver development. Annu Rev Physiol. 1996;58:231–251. doi: 10.1146/annurev.ph.58.030196.001311. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES