Abstract
The uppermost superficial surface layer of articular cartilage, the ‘lamina splendens’ which provides a very low friction lubrication surface in articular joints, was investigated using atomic force microscopy (AFM). Complementary specimens were also observed under SEM at −10 °C without dehydration or sputter ion coating. Fresh adult pig osteochondral specimens were prepared from the patellas of pig knee joints and digested with the enzymes, hyaluronidase, chondroitinase ABC and alkaline protease. Friction coefficients between a pyrex glass plate and the osteochondral specimens digested by enzymes as well as natural (undigested) specimens were measured, using a thrust collar apparatus. Normal saline, hyaluronic acid (HA) and a mixture of albumin, globulin, HA (AGH) were used as lubrication media. The surface irregularities usually observed in SEM studies were not apparent under AFM. The articular cartilage surface was resistant to hyaluronidase and also to chondroitinase ABC, but a fibrous structure was exhibited in alkaline protease enzymes-digested specimens. AFM analysis revealed that the thickness of the uppermost superficial surface layer of articular cartilage was between 800 nm and 2 μm in adult pig articular cartilage. The coefficient of friction (c.f.) was significantly higher in chondroitinase ABC and alkaline protease enzymes digested specimens. Generally, in normal saline lubrication medium, c.f. was higher in comparison to HA and AGH lubrication media. The role of the uppermost, superficial surface layer of articular cartilage in the lubrication mechanism of joints is discussed.
Keywords: Uppermost superficial surface layer, articular cartilage, lubrication, atomic force microscopy, protein
Full Text
The Full Text of this article is available as a PDF (580.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balazs E. A., Bloom G. A., Swann D. A. Fine structure and glycosaminoglycan content of the surface layer of articular cartilage. Fed Proc. 1966 Nov-Dec;25(6):1813–1816. [PubMed] [Google Scholar]
- Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
- Bloebaum R. D., Wilson A. S. The morphology of the surface of artcular cartilage in adult rats. J Anat. 1980 Sep;131(Pt 2):333–346. [PMC free article] [PubMed] [Google Scholar]
- Chikama H. [The role of protein and hyaluronic acid in the synovial fluid in animal joint lubrication]. Nihon Seikeigeka Gakkai Zasshi. 1985 May;59(5):559–572. [PubMed] [Google Scholar]
- Clarke I. C. Articular cartilage: a review and scanning electron microscope study. 1. The interterritorial fibrillar architecture. J Bone Joint Surg Br. 1971 Nov;53(4):732–750. [PubMed] [Google Scholar]
- Gardner D. L., O'Connor P., Oates K. Low temperature scanning electron microscopy of dog and guinea-pig hyaline articular cartilage. J Anat. 1981 Mar;132(Pt 2):267–282. [PMC free article] [PubMed] [Google Scholar]
- Gardner D. L. The influence of microscopic technology on knowledge of cartilage surface structure. Ann Rheum Dis. 1972 Jul;31(4):235–258. doi: 10.1136/ard.31.4.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghadially F. N., Yong N. K., Lalonde J. M. A transmission electron microscopic comparison of the articular surface of cartilage processed attached to bone and detached from bone. J Anat. 1982 Dec;135(Pt 4):685–706. [PMC free article] [PubMed] [Google Scholar]
- Guilak F., Ratcliffe A., Lane N., Rosenwasser M. P., Mow V. C. Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J Orthop Res. 1994 Jul;12(4):474–484. doi: 10.1002/jor.1100120404. [DOI] [PubMed] [Google Scholar]
- Hansma H. G., Hoh J. H. Biomolecular imaging with the atomic force microscope. Annu Rev Biophys Biomol Struct. 1994;23:115–139. doi: 10.1146/annurev.bb.23.060194.000555. [DOI] [PubMed] [Google Scholar]
- Jeffery A. K., Blunn G. W., Archer C. W., Bentley G. Three-dimensional collagen architecture in bovine articular cartilage. J Bone Joint Surg Br. 1991 Sep;73(5):795–801. doi: 10.1302/0301-620X.73B5.1894669. [DOI] [PubMed] [Google Scholar]
- Jurvelin J. S., Müller D. J., Wong M., Studer D., Engel A., Hunziker E. B. Surface and subsurface morphology of bovine humeral articular cartilage as assessed by atomic force and transmission electron microscopy. J Struct Biol. 1996 Jul-Aug;117(1):45–54. doi: 10.1006/jsbi.1996.0068. [DOI] [PubMed] [Google Scholar]
- Kobayashi S., Yonekubo S., Kurogouchi Y. Cryoscanning electron microscopic study of the surface amorphous layer of articular cartilage. J Anat. 1995 Oct;187(Pt 2):429–444. [PMC free article] [PubMed] [Google Scholar]
- Meachim G., Sheffield S. R. Surface ultrastructure of mature adult human articular cartilage. J Bone Joint Surg Br. 1969 Aug;51(3):529–539. [PubMed] [Google Scholar]
- Mow V. C., Ratcliffe A., Poole A. R. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials. 1992;13(2):67–97. doi: 10.1016/0142-9612(92)90001-5. [DOI] [PubMed] [Google Scholar]
- Oike Y., Kimata K., Shinomura T., Nakazawa K., Suzuki S. Structural analysis of chick-embryo cartilage proteoglycan by selective degradation with chondroitin lyases (chondroitinases) and endo-beta-D-galactosidase (keratanase). Biochem J. 1980 Oct 1;191(1):193–207. doi: 10.1042/bj1910193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oka M., Noguchi T., Kumar P., Ikeuchi K., Yamamuro T., Hyon S. H., Ikada Y. Development of an artificial articular cartilage. Clin Mater. 1990;6(4):361–381. doi: 10.1016/0267-6605(90)90053-x. [DOI] [PubMed] [Google Scholar]
- Orford C. R., Gardner D. L. Ultrastructural histochemistry of the surface lamina of normal articular cartilage. Histochem J. 1985 Feb;17(2):223–233. doi: 10.1007/BF01003221. [DOI] [PubMed] [Google Scholar]
- Radmacher M., Tillmann R. W., Gaub H. E. Imaging viscoelasticity by force modulation with the atomic force microscope. Biophys J. 1993 Mar;64(3):735–742. doi: 10.1016/S0006-3495(93)81433-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Setton L. A., Zhu W., Mow V. C. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior. J Biomech. 1993 Apr-May;26(4-5):581–592. doi: 10.1016/0021-9290(93)90019-b. [DOI] [PubMed] [Google Scholar]
- Stanescu R. Effects of enzymatic digestions on the negative charge of articular cartilage surfaces. J Rheumatol. 1985 Oct;12(5):833–840. [PubMed] [Google Scholar]
- Swann D. A., Hendren R. B., Radin E. L., Sotman S. L., Duda E. A. The lubricating activity of synovial fluid glycoproteins. Arthritis Rheum. 1981 Jan;24(1):22–30. doi: 10.1002/art.1780240104. [DOI] [PubMed] [Google Scholar]
- Weiss C., Rosenberg L., Helfet A. J. An ultrastructural study of normal young adult human articular cartilage. J Bone Joint Surg Am. 1968 Jun;50(4):663–674. doi: 10.2106/00004623-196850040-00002. [DOI] [PubMed] [Google Scholar]