Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Oct;199(Pt 4):393–405. doi: 10.1046/j.1469-7580.2001.19940393.x

The differential distribution of acetylated and detyrosinated alpha-tubulin in the microtubular cytoskeleton and primary cilia of hyaline cartilage chondrocytes

C ANTHONY POOLE 1,, ZI-JUN ZHANG 1, JACQUELINE M ROSS 1
PMCID: PMC1468350  PMID: 11693300

Abstract

The primary cilium is a ubiquitous cytoplasmic organelle of unknown function. Ultrastructural evidence of primary cilia in chondrocytes, and their colocalisation with the Golgi apparatus, has led to speculation that these structures are functionally linked. To investigate the relationship between these organelles, we examined the molecular anatomy of the microtubular cytoskeleton in the chondrocytes of chick embryo sterna. Thick cryosections were immunolabelled with antibodies directed against acetylated α-tubulin (C3B9), detyrosinated α-tubulin (ID5) and total α-tubulin (TAT), and imaged at high magnification using confocal laser scanning microscopy. Transmission electron microscopy confirmed the ultrastructure of the chondrocyte primary cilium and its structural relationship to the Golgi apparatus. Detyrosinated and acetylated α-tubulins were concentrated in the centrioles, centrosome and microtubule organising centre adjacent to the nucleus, with total α-tubulin distributed throughout the cytoplasm. ID5 stained the primary cilium at an incidence of 1 per cell, its colocalisation with C3B9 identifying the primary cilium as one of the most stable features of the microtubular cytoskeleton. Primary cilia varied from 1 to 4 μm in length, and 3 patterns of projection into the extracellular matrix were identified; (1) full extension and matrix contact, with minor undulations along the length; (2) partial extension and matrix contact, with a range of bending deflections; (3) cilium reclined against the cell surface with minimal matrix contact. Ultrastructural studies identified direct connections between extracellular collagen fibres and the proteins which decorate ciliary microtubules, suggesting a matrix–cilium–Golgi continuum in hyaline chondrocytes. These results strengthen the hypothesis that the primary cilium acts as a ‘cellular cybernetic probe' capable of transducing environmental information from the extracellular matrix, communicating this information to the centrosome, and regulating the exocytosis of Golgi-derived secretory vesicles.

Keywords: Chick embryo sterna, immunohistochemistry, microtubules, confocal microscopy, electron microscopy

Full Text

The Full Text of this article is available as a PDF (730.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alieva I. B., Gorgidze L. A., Komarova Y. A., Chernobelskaya O. A., Vorobjev I. A. Experimental model for studying the primary cilia in tissue culture cells. Membr Cell Biol. 1999;12(6):895–905. [PubMed] [Google Scholar]
  2. Banes A. J., Tsuzaki M., Yamamoto J., Fischer T., Brigman B., Brown T., Miller L. Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem Cell Biol. 1995 Jul-Aug;73(7-8):349–365. doi: 10.1139/o95-043. [DOI] [PubMed] [Google Scholar]
  3. Brinkley B. R. Microtubule organizing centers. Annu Rev Cell Biol. 1985;1:145–172. doi: 10.1146/annurev.cb.01.110185.001045. [DOI] [PubMed] [Google Scholar]
  4. Brown P. D., Benya P. D. Alterations in chondrocyte cytoskeletal architecture during phenotypic modulation by retinoic acid and dihydrocytochalasin B-induced reexpression. J Cell Biol. 1988 Jan;106(1):171–179. doi: 10.1083/jcb.106.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bulinski J. C., Richards J. E., Piperno G. Posttranslational modifications of alpha tubulin: detyrosination and acetylation differentiate populations of interphase microtubules in cultured cells. J Cell Biol. 1988 Apr;106(4):1213–1220. doi: 10.1083/jcb.106.4.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burgoyne R. D., Morgan A. Regulated exocytosis. Biochem J. 1993 Jul 15;293(Pt 2):305–316. doi: 10.1042/bj2930305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Camilli P., Moretti M., Donini S. D., Walter U., Lohmann S. M. Heterogeneous distribution of the cAMP receptor protein RII in the nervous system: evidence for its intracellular accumulation on microtubules, microtubule-organizing centers, and in the area of the Golgi complex. J Cell Biol. 1986 Jul;103(1):189–203. doi: 10.1083/jcb.103.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dentler W. L. Microtubule-membrane interactions in cilia and flagella. Int Rev Cytol. 1981;72:1–47. doi: 10.1016/s0074-7696(08)61193-6. [DOI] [PubMed] [Google Scholar]
  9. Durrant L. A., Archer C. W., Benjamin M., Ralphs J. R. Organisation of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture. J Anat. 1999 Apr;194(Pt 3):343–353. doi: 10.1046/j.1469-7580.1999.19430343.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Farquharson C., Lester D., Seawright E., Jefferies D., Houston B. Microtubules are potential regulators of growth-plate chondrocyte differentiation and hypertrophy. Bone. 1999 Oct;25(4):405–412. doi: 10.1016/s8756-3282(99)00187-8. [DOI] [PubMed] [Google Scholar]
  11. Geuens G., Gundersen G. G., Nuydens R., Cornelissen F., Bulinski J. C., DeBrabander M. Ultrastructural colocalization of tyrosinated and detyrosinated alpha-tubulin in interphase and mitotic cells. J Cell Biol. 1986 Nov;103(5):1883–1893. doi: 10.1083/jcb.103.5.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gilula N. B., Satir P. The ciliary necklace. A ciliary membrane specialization. J Cell Biol. 1972 May;53(2):494–509. doi: 10.1083/jcb.53.2.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Händel M., Schulz S., Stanarius A., Schreff M., Erdtmann-Vourliotis M., Schmidt H., Wolf G., Höllt V. Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience. 1999 Mar;89(3):909–926. doi: 10.1016/s0306-4522(98)00354-6. [DOI] [PubMed] [Google Scholar]
  14. Idowu B. D., Knight M. M., Bader D. L., Lee D. A. Confocal analysis of cytoskeletal organisation within isolated chondrocyte sub-populations cultured in agarose. Histochem J. 2000 Mar;32(3):165–174. doi: 10.1023/a:1004095207330. [DOI] [PubMed] [Google Scholar]
  15. Ingber D. E. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci. 1993 Mar;104(Pt 3):613–627. doi: 10.1242/jcs.104.3.613. [DOI] [PubMed] [Google Scholar]
  16. Jensen C. G., Davison E. A., Bowser S. S., Rieder C. L. Primary cilia cycle in PtK1 cells: effects of colcemid and taxol on cilia formation and resorption. Cell Motil Cytoskeleton. 1987;7(3):187–197. doi: 10.1002/cm.970070302. [DOI] [PubMed] [Google Scholar]
  17. Jortikka M. O., Parkkinen J. J., Inkinen R. I., Kärner J., Järveläinen H. T., Nelimarkka L. O., Tammi M. I., Lammi M. J. The role of microtubules in the regulation of proteoglycan synthesis in chondrocytes under hydrostatic pressure. Arch Biochem Biophys. 2000 Feb 15;374(2):172–180. doi: 10.1006/abbi.1999.1543. [DOI] [PubMed] [Google Scholar]
  18. Keil T. A. Functional morphology of insect mechanoreceptors. Microsc Res Tech. 1997 Dec 15;39(6):506–531. doi: 10.1002/(SICI)1097-0029(19971215)39:6<506::AID-JEMT5>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  19. Kim Y. J., Bonassar L. J., Grodzinsky A. J. The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression. J Biomech. 1995 Sep;28(9):1055–1066. doi: 10.1016/0021-9290(94)00159-2. [DOI] [PubMed] [Google Scholar]
  20. Kimble M., Kuriyama R. Functional components of microtubule-organizing centers. Int Rev Cytol. 1992;136:1–50. doi: 10.1016/s0074-7696(08)62049-5. [DOI] [PubMed] [Google Scholar]
  21. Kouri J. B., Jiménez S. A., Quintero M., Chico A. Ultrastructural study of chondrocytes from fibrillated and non-fibrillated human osteoarthritic cartilage. Osteoarthritis Cartilage. 1996 Jun;4(2):111–125. doi: 10.1016/s1063-4584(05)80320-6. [DOI] [PubMed] [Google Scholar]
  22. Kreis T. E. Role of microtubules in the organisation of the Golgi apparatus. Cell Motil Cytoskeleton. 1990;15(2):67–70. doi: 10.1002/cm.970150202. [DOI] [PubMed] [Google Scholar]
  23. Lange B. M., Gull K. A molecular marker for centriole maturation in the mammalian cell cycle. J Cell Biol. 1995 Aug;130(4):919–927. doi: 10.1083/jcb.130.4.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lee D. A., Bader D. L. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res. 1997 Mar;15(2):181–188. doi: 10.1002/jor.1100150205. [DOI] [PubMed] [Google Scholar]
  25. Letourneau P. C., Wire J. P. Three-dimensional organization of stable microtubules and the Golgi apparatus in the somata of developing chick sensory neurons. J Neurocytol. 1995 Mar;24(3):207–223. doi: 10.1007/BF01181535. [DOI] [PubMed] [Google Scholar]
  26. Loeser R. F. Chondrocyte integrin expression and function. Biorheology. 2000;37(1-2):109–116. [PubMed] [Google Scholar]
  27. Ludueña R. F. Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol. 1998;178:207–275. doi: 10.1016/s0074-7696(08)62138-5. [DOI] [PubMed] [Google Scholar]
  28. Maniotis A. J., Chen C. S., Ingber D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):849–854. doi: 10.1073/pnas.94.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Meier-Vismara E., Walker N., Vogel A. Single cilia in the articular cartilage of the cat. Exp Cell Biol. 1979;47(3):161–171. doi: 10.1159/000162933. [DOI] [PubMed] [Google Scholar]
  30. Menco B. P. Pre-natal development of rat nasal epithelia. V. Freeze-fracturing on necklaces of primary and secondary cilia of olfactory and respiratory epithelial cells. Anat Embryol (Berl) 1988;178(5):381–388. doi: 10.1007/BF00306044. [DOI] [PubMed] [Google Scholar]
  31. Moran D. T., Rowley J. C., 3rd The structure and function of sensory cilia. J Submicrosc Cytol. 1983 Jan;15(1):157–162. [PubMed] [Google Scholar]
  32. Moskalewski S., Popowicz P., Thyberg J. Functions of the Golgi complex in cell division: formation of cell-matrix contacts and cell-cell communication channels in the terminal phase of cytokinesis. J Submicrosc Cytol Pathol. 1994 Jan;26(1):9–20. [PubMed] [Google Scholar]
  33. Moskalewski S., Thyberg J., Friberg U. Cold and metabolic inhibitor effects on cytoplasmic microtubules and the Golgi complex in cultured rat epiphyseal chondrocytes. Cell Tissue Res. 1980;210(3):403–415. doi: 10.1007/BF00220198. [DOI] [PubMed] [Google Scholar]
  34. Moskalewski S., Thyberg J. Synchronized shift in localization of the Golgi complex and the microtubule organizing center in the terminal phase of cytokinesis. J Submicrosc Cytol Pathol. 1992 Jul;24(3):359–370. [PubMed] [Google Scholar]
  35. Muir H. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays. 1995 Dec;17(12):1039–1048. doi: 10.1002/bies.950171208. [DOI] [PubMed] [Google Scholar]
  36. Panda D., Miller H. P., Banerjee A., Ludueña R. F., Wilson L. Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11358–11362. doi: 10.1073/pnas.91.24.11358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Piperno G., Fuller M. T. Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J Cell Biol. 1985 Dec;101(6):2085–2094. doi: 10.1083/jcb.101.6.2085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Piperno G., LeDizet M., Chang X. J. Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J Cell Biol. 1987 Feb;104(2):289–302. doi: 10.1083/jcb.104.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Poole C. A., Flint M. H., Beaumont B. W. Analysis of the morphology and function of primary cilia in connective tissues: a cellular cybernetic probe? Cell Motil. 1985;5(3):175–193. doi: 10.1002/cm.970050302. [DOI] [PubMed] [Google Scholar]
  40. Poole C. A., Jensen C. G., Snyder J. A., Gray C. G., Hermanutz V. L., Wheatley D. N. Confocal analysis of primary cilia structure and colocalization with the Golgi apparatus in chondrocytes and aortic smooth muscle cells. Cell Biol Int. 1997 Aug;21(8):483–494. doi: 10.1006/cbir.1997.0177. [DOI] [PubMed] [Google Scholar]
  41. Ravindra R. Is signal transduction modulated by an interaction between heterotrimeric G-proteins and tubulin? Endocrine. 1997 Oct;7(2):127–143. doi: 10.1007/BF02778134. [DOI] [PubMed] [Google Scholar]
  42. Rose M. D., Biggins S., Satterwhite L. L. Unravelling the tangled web at the microtubule-organizing center. Curr Opin Cell Biol. 1993 Feb;5(1):105–115. doi: 10.1016/s0955-0674(05)80015-8. [DOI] [PubMed] [Google Scholar]
  43. Rüdiger A. H., Rüdiger M., Wehland J., Weber K. Monoclonal antibody ID5: epitope characterization and minimal requirements for the recognition of polyglutamylated alpha- and beta-tubulin. Eur J Cell Biol. 1999 Jan;78(1):15–20. doi: 10.1016/s0171-9335(99)80003-x. [DOI] [PubMed] [Google Scholar]
  44. Schulze E., Asai D. J., Bulinski J. C., Kirschner M. Posttranslational modification and microtubule stability. J Cell Biol. 1987 Nov;105(5):2167–2177. doi: 10.1083/jcb.105.5.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Schulze E., Kirschner M. Dynamic and stable populations of microtubules in cells. J Cell Biol. 1987 Feb;104(2):277–288. doi: 10.1083/jcb.104.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Silbert J. E., Sugumaran G. Intracellular membranes in the synthesis, transport, and metabolism of proteoglycans. Biochim Biophys Acta. 1995 Dec 20;1241(3):371–384. doi: 10.1016/0304-4157(95)00011-9. [DOI] [PubMed] [Google Scholar]
  47. Skoufias D. A., Burgess T. L., Wilson L. Spatial and temporal colocalization of the Golgi apparatus and microtubules rich in detyrosinated tubulin. J Cell Biol. 1990 Nov;111(5 Pt 1):1929–1937. doi: 10.1083/jcb.111.5.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tenkova T., Chaldakov G. N. Golgi-cilium complex in rabbit ciliary process cells. Cell Struct Funct. 1988 Oct;13(5):455–458. doi: 10.1247/csf.13.455. [DOI] [PubMed] [Google Scholar]
  49. Thyberg J., Moskalewski S. Microtubules and the organization of the Golgi complex. Exp Cell Res. 1985 Jul;159(1):1–16. doi: 10.1016/s0014-4827(85)80032-x. [DOI] [PubMed] [Google Scholar]
  50. Thyberg J., Moskalewski S. Relationship between the Golgi complex and microtubules enriched in detyrosinated or acetylated alpha-tubulin: studies on cells recovering from nocodazole and cells in the terminal phase of cytokinesis. Cell Tissue Res. 1993 Sep;273(3):457–466. doi: 10.1007/BF00333700. [DOI] [PubMed] [Google Scholar]
  51. Thyberg J., Moskalewski S. Reorganization of the Golgi complex in association with mitosis: redistribution of mannosidase II to the endoplasmic reticulum and effects of brefeldin A. J Submicrosc Cytol Pathol. 1992 Oct;24(4):495–508. [PubMed] [Google Scholar]
  52. Thyberg J., Moskalewski S. Role of microtubules in the organization of the Golgi complex. Exp Cell Res. 1999 Feb 1;246(2):263–279. doi: 10.1006/excr.1998.4326. [DOI] [PubMed] [Google Scholar]
  53. Toyoda T., Saito S., Inokuchi S., Yabe Y. The effects of tensile load on the metabolism of cultured chondrocytes. Clin Orthop Relat Res. 1999 Feb;(359):221–228. doi: 10.1097/00003086-199902000-00025. [DOI] [PubMed] [Google Scholar]
  54. Vertel B. M., Barkman L. L., Morrell J. J. Intracellular features of type II procollagen and chondroitin sulfate proteoglycan synthesis in chondrocytes. J Cell Biochem. 1985;27(3):215–229. doi: 10.1002/jcb.240270304. [DOI] [PubMed] [Google Scholar]
  55. Wehland J., Weber K. Turnover of the carboxy-terminal tyrosine of alpha-tubulin and means of reaching elevated levels of detyrosination in living cells. J Cell Sci. 1987 Sep;88(Pt 2):185–203. doi: 10.1242/jcs.88.2.185. [DOI] [PubMed] [Google Scholar]
  56. Wheatley D. N., Feilen E. M., Yin Z., Wheatley S. P. Primary cilia in cultured mammalian cells: detection with an antibody against detyrosinated alpha-tubulin (ID5) and by electron microscopy. J Submicrosc Cytol Pathol. 1994 Jan;26(1):91–102. [PubMed] [Google Scholar]
  57. Wheatley D. N. Primary cilia in normal and pathological tissues. Pathobiology. 1995;63(4):222–238. doi: 10.1159/000163955. [DOI] [PubMed] [Google Scholar]
  58. Wilsman N. J. Cilia of adult canine articular chondrocytes. J Ultrastruct Res. 1978 Sep;64(3):270–281. doi: 10.1016/s0022-5320(78)90036-9. [DOI] [PubMed] [Google Scholar]
  59. Wislman N. J., Fletcher T. F. Cilia of neonatal articular chondrocytes: incidence and morphology. Anat Rec. 1978 Apr;190(4):871–889. doi: 10.1002/ar.1091900408. [DOI] [PubMed] [Google Scholar]
  60. Woods A., Sherwin T., Sasse R., MacRae T. H., Baines A. J., Gull K. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J Cell Sci. 1989 Jul;93(Pt 3):491–500. doi: 10.1242/jcs.93.3.491. [DOI] [PubMed] [Google Scholar]
  61. Zaal K. J., Smith C. L., Polishchuk R. S., Altan N., Cole N. B., Ellenberg J., Hirschberg K., Presley J. F., Roberts T. H., Siggia E. Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell. 1999 Dec 10;99(6):589–601. doi: 10.1016/s0092-8674(00)81548-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES