Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Oct;199(Pt 4):449–456. doi: 10.1046/j.1469-7580.2001.19940449.x

Changes in aponeurotic dimensions upon muscle shortening: in vivo observations in man

CONSTANTINOS N MAGANARIS 1,, YASUO KAWAKAMI 1, TETSUO FUKUNAGA 1
PMCID: PMC1468355  PMID: 11693305

Abstract

Aponeurotic deformation measurements have traditionally been taken by loading dissected muscles; thus the values obtained may not reflect in vivo function. In the present study, we estimated dimensional changes in the central aponeurosis of the intact human tibialis anterior muscle upon loading induced by muscle contraction. Measurements were taken in seven males, and involved real-time ultrasound scanning of the tibialis anterior muscle at 30° of plantarflexion at rest and during isometric dorsiflexion maximum voluntary contraction (MVC). At each contraction state, the length of the aponeurosis, the width along its length, and its area were estimated from sagittal-plane and axial-plane sonographs. In the transition from rest to MVC, the length of the aponeurosis increased by 7% (P < 0.05), its width increased by up to 21% (P < 0.05), and its area increased by 17% (P < 0.05). These results indicate that the in vivo tibialis anterior aponeurosis behaves as a compliant material upon active muscle shortening. The methodology employed allows cross-sectional and longitudinal design investigations, circumventing the problems associated with epimysial removal under in vitro experimental conditions.

Keywords: Tendinous tissue, elasticity, muscle contraction, ultrasound

Full Text

The Full Text of this article is available as a PDF (359.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aratow M., Ballard R. E., Crenshaw A. G., Styf J., Watenpaugh D. E., Kahan N. J., Hargens A. R. Intramuscular pressure and electromyography as indexes of force during isokinetic exercise. J Appl Physiol (1985) 1993 Jun;74(6):2634–2640. doi: 10.1152/jappl.1993.74.6.2634. [DOI] [PubMed] [Google Scholar]
  2. Bobbert M. F., Huijing P. A., van Ingen Schenau G. J. A model of the human triceps surae muscle-tendon complex applied to jumping. J Biomech. 1986;19(11):887–898. doi: 10.1016/0021-9290(86)90184-3. [DOI] [PubMed] [Google Scholar]
  3. Ettema G. J., Huijing P. A. Properties of the tendinous structures and series elastic component of EDL muscle-tendon complex of the rat. J Biomech. 1989;22(11-12):1209–1215. doi: 10.1016/0021-9290(89)90223-6. [DOI] [PubMed] [Google Scholar]
  4. Garfin S. R., Tipton C. M., Mubarak S. J., Woo S. L., Hargens A. R., Akeson W. H. Role of fascia in maintenance of muscle tension and pressure. J Appl Physiol Respir Environ Exerc Physiol. 1981 Aug;51(2):317–320. doi: 10.1152/jappl.1981.51.2.317. [DOI] [PubMed] [Google Scholar]
  5. Huijing P. A., Ettema G. J. Length-force characteristics of aponeurosis in passive muscle and during isometric and slow dynamic contractions of rat gastrocnemius muscle. Acta Morphol Neerl Scand. 1988;26(1):51–62. [PubMed] [Google Scholar]
  6. Kawakami Y., Abe T., Fukunaga T. Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol (1985) 1993 Jun;74(6):2740–2744. doi: 10.1152/jappl.1993.74.6.2740. [DOI] [PubMed] [Google Scholar]
  7. Lieber R. L., Leonard M. E., Brown C. G., Trestik C. L. Frog semitendinosis tendon load-strain and stress-strain properties during passive loading. Am J Physiol. 1991 Jul;261(1 Pt 1):C86–C92. doi: 10.1152/ajpcell.1991.261.1.C86. [DOI] [PubMed] [Google Scholar]
  8. Maganaris C. N., Baltzopoulos V., Sargeant A. J. Changes in the tibialis anterior tendon moment arm from rest to maximum isometric dorsiflexion: in vivo observations in man. Clin Biomech (Bristol, Avon) 1999 Nov;14(9):661–666. doi: 10.1016/s0268-0033(99)00018-2. [DOI] [PubMed] [Google Scholar]
  9. Maganaris C. N., Paul J. P. In vivo human tendinous tissue stretch upon maximum muscle force generation. J Biomech. 2000 Nov;33(11):1453–1459. doi: 10.1016/s0021-9290(00)00099-3. [DOI] [PubMed] [Google Scholar]
  10. Maganaris C. N., Paul J. P. Load-elongation characteristics of in vivo human tendon and aponeurosis. J Exp Biol. 2000 Feb;203(Pt 4):751–756. doi: 10.1242/jeb.203.4.751. [DOI] [PubMed] [Google Scholar]
  11. Mozan L. C., Keagy R. D. Muscle relationships in functional fascia. A preliminary study. Clin Orthop Relat Res. 1969 Nov-Dec;67:225–230. [PubMed] [Google Scholar]
  12. Narici M. V., Binzoni T., Hiltbrand E., Fasel J., Terrier F., Cerretelli P. In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol. 1996 Oct 1;496(Pt 1):287–297. doi: 10.1113/jphysiol.1996.sp021685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Otten E. Concepts and models of functional architecture in skeletal muscle. Exerc Sport Sci Rev. 1988;16:89–137. [PubMed] [Google Scholar]
  14. Scott S. H., Loeb G. E. Mechanical properties of aponeurosis and tendon of the cat soleus muscle during whole-muscle isometric contractions. J Morphol. 1995 Apr;224(1):73–86. doi: 10.1002/jmor.1052240109. [DOI] [PubMed] [Google Scholar]
  15. Trestik C. L., Lieber R. L. Relationship between Achilles tendon mechanical properties and gastrocnemius muscle function. J Biomech Eng. 1993 Aug;115(3):225–230. doi: 10.1115/1.2895479. [DOI] [PubMed] [Google Scholar]
  16. Van Leeuwen J. L., Spoor C. W. Modelling the pressure and force equilibrium in unipennate muscles with in-line tendons. Philos Trans R Soc Lond B Biol Sci. 1993 Dec 29;342(1302):321–333. doi: 10.1098/rstb.1993.0162. [DOI] [PubMed] [Google Scholar]
  17. Willems M. E., Huijing P. A. Mechanical and geometrical properties of the rat semimembranosus lateralis muscle during isometric contractions. J Biomech. 1994 Sep;27(9):1109–1118. doi: 10.1016/0021-9290(94)90051-5. [DOI] [PubMed] [Google Scholar]
  18. Zuurbier C. J., Everard A. J., van der Wees P., Huijing P. A. Length-force characteristics of the aponeurosis in the passive and active muscle condition and in the isolated condition. J Biomech. 1994 Apr;27(4):445–453. doi: 10.1016/0021-9290(94)90020-5. [DOI] [PubMed] [Google Scholar]
  19. Zuurbier C. J., Huijing P. A. Influence of muscle geometry on shortening speed of fibre, aponeurosis and muscle. J Biomech. 1992 Sep;25(9):1017–1026. doi: 10.1016/0021-9290(92)90037-2. [DOI] [PubMed] [Google Scholar]
  20. van Donkelaar C. C., Willems P. J., Muijtjens A. M., Drost M. R. Skeletal muscle transverse strain during isometric contraction at different lengths. J Biomech. 1999 Aug;32(8):755–762. doi: 10.1016/s0021-9290(99)00073-1. [DOI] [PubMed] [Google Scholar]
  21. van Leeuwen J. L., Spoor C. W. A two dimensional model for the prediction of muscle shape and intramuscular pressure. Eur J Morphol. 1996;34(1):25–30. doi: 10.1076/ejom.34.1.25.13155. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES