Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Oct;199(Pt 4):473–482. doi: 10.1046/j.1469-7580.2001.19940473.x

Origin and course of the coronary arteries in normal mice and in iv/iv mice

JOSÉ M ICARDO 1,, ELVIRA COLVEE 1
PMCID: PMC1468358  PMID: 11693308

Abstract

This paper reports on the origin and distribution of the coronary arteries in normal mice and in mice of the iv/iv strain, which show situs inversus and heterotaxia. The coronary arteries were studied by direct observation of the aortic sinuses with the scanning electron microscope, and by examination of vascular corrosion casts. In the normal mouse, the left and right coronaries (LC, RC) arise from the respective Valsalva sinus and course along the ventricular borders to reach the heart apex. Along this course the coronary arteries give off small branches at perpendicular or acute angles to supply the ventricles. The ventricular septum is supplied by the septal artery, which arises as a main branch from the right coronary. Conus arteries arise from the main coronary trunks, from the septal artery and/or directly from the Valsalva sinus. The vascular casts demonstrate the presence of intercoronary anastomoses. The origin of the coronary arteries was found to be abnormal in 84% of the iv/iv mice. These anomalies included double origin, high take-off, slit-like openings and the presence of a single coronary orifice. These anomalies occurred singly or in any combination, and were independent of heart situs. The septal artery originated from RC in most cases of situs solitus but originated predominantly from LC in situs inversus hearts. Except for this anomalous origin no statistical correlation was found between the coronary anomalies and heart situs or a particular mode of heterotaxia. The coronary anomalies observed in the iv/iv mice are similar to those found in human hearts. Most coronary anomalies appear to be due to defective connections between the aortic root and the developing coronaries. iv/iv mice may therefore constitute a good model to study the development of similar anomalies in the human heart.

Keywords: Coronary arteries, mouse, heart, iv/iv mouse, vascular corrosion casts

Full Text

The Full Text of this article is available as a PDF (704.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S. H., Rakhawy M. T., Abdalla A., Assaad E. I. The comparative anatomy of the blood supply of cardiac ventricles in the albino rat and guinea-pig. J Anat. 1978 May;126(Pt 1):51–57. [PMC free article] [PubMed] [Google Scholar]
  2. Allwork S. P. The applied anatomy of the arterial blood supply to the heart in man. J Anat. 1987 Aug;153:1–16. [PMC free article] [PubMed] [Google Scholar]
  3. Anderson R. H. How should we optimally describe complex congenitally malformed hearts? Ann Thorac Surg. 1996 Sep;62(3):710–716. doi: 10.1016/s0003-4975(96)00372-4. [DOI] [PubMed] [Google Scholar]
  4. Angelini P. Normal and anomalous coronary arteries: definitions and classification. Am Heart J. 1989 Feb;117(2):418–434. doi: 10.1016/0002-8703(89)90789-8. [DOI] [PubMed] [Google Scholar]
  5. Arque J. M., Cruz V., Rosado L. M., Sans-Coma V. Congenital anomalies of coronary arteries in rodents. Am J Cardiol. 1986 Feb 15;57(6):498–499. doi: 10.1016/0002-9149(86)90789-7. [DOI] [PubMed] [Google Scholar]
  6. Baltaxe H. A., Wixson D. The incidence of congenital anomalies of the coronary arteries in the adult population. Radiology. 1977 Jan;122(1):47–52. doi: 10.1148/122.1.47. [DOI] [PubMed] [Google Scholar]
  7. Bartorelli A. L., Capacchione V., Ravagnani P., Pepi M. Anomalous origin of the left anterior descending and circumflex coronary arteries by two separate ostia from the right sinus of Valsalva. Int J Cardiol. 1994 May;44(3):294–298. doi: 10.1016/0167-5273(94)90295-x. [DOI] [PubMed] [Google Scholar]
  8. Blankenship J. C., Ramires J. A. Coronary arteriography in patients with dextrocardia. Cathet Cardiovasc Diagn. 1991 Jun;23(2):103–106. doi: 10.1002/ccd.1810230207. [DOI] [PubMed] [Google Scholar]
  9. Bogers A. J., Gittenberger-de Groot A. C., Poelmann R. E., Péault B. M., Huysmans H. A. Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat Embryol (Berl) 1989;180(5):437–441. doi: 10.1007/BF00305118. [DOI] [PubMed] [Google Scholar]
  10. Burstein D. MR imaging of coronary artery flow in isolated and in vivo hearts. J Magn Reson Imaging. 1991 May-Jun;1(3):337–346. doi: 10.1002/jmri.1880010312. [DOI] [PubMed] [Google Scholar]
  11. Feinstein S. B., Lang R. M., Dick C., Neumann A., Al-Sadir J., Chua K. G., Carroll J., Feldman T., Borow K. M. Contrast echocardiography during coronary arteriography in humans: perfusion and anatomic studies. J Am Coll Cardiol. 1988 Jan;11(1):59–65. doi: 10.1016/0735-1097(88)90167-2. [DOI] [PubMed] [Google Scholar]
  12. Fernández M. C., Durán A. C., Real R., López D., Fernández B., de Andrés A. V., Arqué J. M., Gallego A., Sans-Coma V. Coronary artery anomalies and aortic valve morphology in the Syrian hamster. Lab Anim. 2000 Apr;34(2):145–154. doi: 10.1258/002367700780457545. [DOI] [PubMed] [Google Scholar]
  13. Gaither N. S., Rogan K. M., Stajduhar K., Banks A. K., Hull R. W., Whitsitt T., Vernalis M. N. Anomalous origin and course of coronary arteries in adults: identification and improved imaging utilizing transesophageal echocardiography. Am Heart J. 1991 Jul;122(1 Pt 1):69–75. doi: 10.1016/0002-8703(91)90760-f. [DOI] [PubMed] [Google Scholar]
  14. HALPERN M. H. The dual blood supply of the rat heart. Am J Anat. 1957 Jul;101(1):1–16. doi: 10.1002/aja.1001010102. [DOI] [PubMed] [Google Scholar]
  15. Hutchins G. M., Kessler-Hanna A., Moore G. W. Development of the coronary arteries in the embryonic human heart. Circulation. 1988 Jun;77(6):1250–1257. doi: 10.1161/01.cir.77.6.1250. [DOI] [PubMed] [Google Scholar]
  16. Icardo J. M., Arrechedera H., Colvee E. The atrioventricular valves of the mouse. I. A scanning electron microscope study. J Anat. 1993 Feb;182(Pt 1):87–94. [PMC free article] [PubMed] [Google Scholar]
  17. Icardo J. M., Sanchez de Vega M. J. Spectrum of heart malformations in mice with situs solitus, situs inversus, and associated visceral heterotaxy. Circulation. 1991 Dec;84(6):2547–2558. doi: 10.1161/01.cir.84.6.2547. [DOI] [PubMed] [Google Scholar]
  18. Ilia R., Gussarsky Y., Gueron M. Coronary angiography in a patient with mirror-image heart ("situs inversus"). Int J Cardiol. 1988 Aug;20(2):273–275. doi: 10.1016/0167-5273(88)90272-0. [DOI] [PubMed] [Google Scholar]
  19. Isobe M., Suzuki J., Morishita R., Kaneda Y., Amano J. Gene therapy for heart transplantation-associated coronary arteriosclerosis. Ann N Y Acad Sci. 2000 May;902:77–83. doi: 10.1111/j.1749-6632.2000.tb06302.x. [DOI] [PubMed] [Google Scholar]
  20. JAMES T. N., BURCH G. E. Blood supply of the human interventricular septum. Circulation. 1958 Mar;17(3):391–396. doi: 10.1161/01.cir.17.3.391. [DOI] [PubMed] [Google Scholar]
  21. Lametschwandtner A., Lametschwandtner U., Weiger T. Scanning electron microscopy of vascular corrosion casts--technique and applications: updated review. Scanning Microsc. 1990 Dec;4(4):889–941. [PubMed] [Google Scholar]
  22. Layton W. M., Jr Heart malformations in mice homozygous for a gene causing situs inversus. Birth Defects Orig Artic Ser. 1978;14(7):277–293. [PubMed] [Google Scholar]
  23. Li J., Tulloh R. M., Cook A., Schneider M., Ho S. Y., Anderson R. H. Coronary arterial origins in transposition of the great arteries: factors that affect outcome. A morphological and clinical study. Heart. 2000 Mar;83(3):320–325. doi: 10.1136/heart.83.3.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nossuli T. O., Lakshminarayanan V., Baumgarten G., Taffet G. E., Ballantyne C. M., Michael L. H., Entman M. L. A chronic mouse model of myocardial ischemia-reperfusion: essential in cytokine studies. Am J Physiol Heart Circ Physiol. 2000 Apr;278(4):H1049–H1055. doi: 10.1152/ajpheart.2000.278.4.H1049. [DOI] [PubMed] [Google Scholar]
  25. Patti G., D'Ambrosio A., Di Sciascio G. Coronary stenting in patients with situs viscerum inversus. G Ital Cardiol. 1999 Mar;29(3):304–307. [PubMed] [Google Scholar]
  26. Poelmann R. E., Gittenberger-de Groot A. C., Mentink M. M., Bökenkamp R., Hogers B. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res. 1993 Sep;73(3):559–568. doi: 10.1161/01.res.73.3.559. [DOI] [PubMed] [Google Scholar]
  27. Roberts W. C. Major anomalies of coronary arterial origin seen in adulthood. Am Heart J. 1986 May;111(5):941–963. doi: 10.1016/0002-8703(86)90646-0. [DOI] [PubMed] [Google Scholar]
  28. Roberts W. C., Shirani J. The four subtypes of anomalous origin of the left main coronary artery from the right aortic sinus (or from the right coronary artery). Am J Cardiol. 1992 Jul 1;70(1):119–121. doi: 10.1016/0002-9149(92)91406-t. [DOI] [PubMed] [Google Scholar]
  29. Sans-Coma V., Arqué J. M., Durán A. C., Cardo M., Fernández B., Franco D. The coronary arteries of the Syrian hamster, Mesocricetus auratus (Waterhouse 1839). Ann Anat. 1993 Feb;175(1):53–57. doi: 10.1016/s0940-9602(11)80239-6. [DOI] [PubMed] [Google Scholar]
  30. Scherrer-Crosbie M., Steudel W., Ullrich R., Hunziker P. R., Liel-Cohen N., Newell J., Zaroff J., Zapol W. M., Picard M. H. Echocardiographic determination of risk area size in a murine model of myocardial ischemia. Am J Physiol. 1999 Sep;277(3 Pt 2):H986–H992. doi: 10.1152/ajpheart.1999.277.3.H986. [DOI] [PubMed] [Google Scholar]
  31. Shanoudy H., Russell D. C. Anomalous right coronary artery in a patient with Kartagener's syndrome. Cathet Cardiovasc Diagn. 1996 Nov;39(3):294–299. doi: 10.1002/(SICI)1097-0304(199611)39:3<294::AID-CCD19>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  32. Shirani J., Roberts W. C. Solitary coronary ostium in the aorta in the absence of other major congenital cardiovascular anomalies. J Am Coll Cardiol. 1993 Jan;21(1):137–143. doi: 10.1016/0735-1097(93)90728-j. [DOI] [PubMed] [Google Scholar]
  33. Suzuki J., Isobe M., Morishita R., Nishikawa T., Amano J., Kaneda Y. Antisense Bcl-x oligonucleotide induces apoptosis and prevents arterial neointimal formation in murine cardiac allografts. Cardiovasc Res. 2000 Feb;45(3):783–787. doi: 10.1016/s0008-6363(99)00356-9. [DOI] [PubMed] [Google Scholar]
  34. Tevosian S. G., Deconinck A. E., Tanaka M., Schinke M., Litovsky S. H., Izumo S., Fujiwara Y., Orkin S. H. FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell. 2000 Jun 23;101(7):729–739. doi: 10.1016/s0092-8674(00)80885-5. [DOI] [PubMed] [Google Scholar]
  35. Topaz O., DeMarchena E. J., Perin E., Sommer L. S., Mallon S. M., Chahine R. A. Anomalous coronary arteries: angiographic findings in 80 patients. Int J Cardiol. 1992 Feb;34(2):129–138. doi: 10.1016/0167-5273(92)90148-v. [DOI] [PubMed] [Google Scholar]
  36. Turchin A., Radentz S. S., Burke A. Situs inversus totalis and single coronary ostium: A coincidence or a pattern? Cardiovasc Pathol. 2000 Mar-Apr;9(2):127–129. doi: 10.1016/s1054-8807(99)00040-x. [DOI] [PubMed] [Google Scholar]
  37. Uemura H., Ho S. Y., Anderson R. H., Yagihara T. Ventricular morphology and coronary arterial anatomy in hearts with isometric atrial appendages. Ann Thorac Surg. 1999 May;67(5):1403–1411. doi: 10.1016/s0003-4975(99)00118-6. [DOI] [PubMed] [Google Scholar]
  38. Uemura H., Ho S. Y., Devine W. A., Anderson R. H. Analysis of visceral heterotaxy according to splenic status, appendage morphology, or both. Am J Cardiol. 1995 Oct 15;76(11):846–849. doi: 10.1016/s0002-9149(99)80243-4. [DOI] [PubMed] [Google Scholar]
  39. Vicentini C. A., Orsi A. M., Dias S. M. Observations anatomiques sur la vascularisation artérielle coronarienne chez le Cobaye (Cavia porcellus, L.). Anat Anz. 1991;172(3):209–212. [PubMed] [Google Scholar]
  40. Waldo K. L., Willner W., Kirby M. L. Origin of the proximal coronary artery stems and a review of ventricular vascularization in the chick embryo. Am J Anat. 1990 Jun;188(2):109–120. doi: 10.1002/aja.1001880202. [DOI] [PubMed] [Google Scholar]
  41. Webb S., Brown N. A., Anderson R. H. The structure of the mouse heart in late fetal stages. Anat Embryol (Berl) 1996 Jul;194(1):37–47. doi: 10.1007/BF00196313. [DOI] [PubMed] [Google Scholar]
  42. Wester J. P., Ernst J. M., Mast E. G., Plokker H. W., Bal E. T., Verzijlbergen J. F. Coronary angioplasty in a patient with situs inversus totalis and a single coronary artery. Cathet Cardiovasc Diagn. 1994 Apr;31(4):304–308. doi: 10.1002/ccd.1810310412. [DOI] [PubMed] [Google Scholar]
  43. Yabe Y., Tsukahara R. Percutaneous transluminal coronary angioplasty for culprit lesions in patients with post myocardial infarction angina based on dextrocardia and anomalous coronary arteries. Case reports and methods. Angiology. 1995 May;46(5):431–440. doi: 10.1177/000331979504600511. [DOI] [PubMed] [Google Scholar]
  44. Yamanaka O., Hobbs R. E. Coronary artery anomalies in 126,595 patients undergoing coronary arteriography. Cathet Cardiovasc Diagn. 1990 Sep;21(1):28–40. doi: 10.1002/ccd.1810210110. [DOI] [PubMed] [Google Scholar]
  45. Yip A. S., Chow W. H., Cheung K. L. Dextrocardia with single coronary artery ostium in a patient with aortic regurgitation and supraventricular tachycardia. A case history. Angiology. 1994 Oct;45(10):907–910. doi: 10.1177/000331979404501012. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES