Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Nov;199(Pt 5):567–576. doi: 10.1046/j.1469-7580.2001.19950567.x

The three-dimensional microanatomy of the rabbit and human cornea. A chemical and mechanical microdissection-SEM approach

JOSÉ L OJEDA 1 ,, JUAN A VENTOSA 2 , SONSOLES PIEDRA 1
PMCID: PMC1468367  PMID: 11760887

Abstract

The three-dimensional (3D) microanatomy of the cornea is the major determinant of its optical and mechanical properties. Scanning electron microscopy (SEM) is the most commonly used method to obtain information on the overall 3D microanatomy of organs. However, SEM has not been successful in revealing the 3D microanatomy of the cornea, because the interior of the cornea is too compact to be explored by the electron beam. In this study, the 3D organisation of the cells and extracellular materials of human and rabbit corneas was examined after exposure by HCl and NaOH digestion, and by microdissection by the adhesive tape method. In the cornea of both species, all epithelial cells exhibited microplicae regardless of their location. This raises doubts about the tear film-holding role assigned to the microplicae of the superficial cells. Human and rabbit corneas differed in the collagen fibre patterns of the epithelial basement membranes. The 3D organisation of the stromal lamellae was similar in both species. In humans and rabbits, the keratocytes showed similar 3D features. However, the surface of human keratocytes located near Descemet's membrane exhibited small fenestrations that were not present in the rabbit keratocytes. The pattern of keratocyte innervation by the stromal neural plexus and 3D keratocyte microanatomy confirms that keratocytes form a large intercommunicating network within the corneal stroma. Two morphologically discrete subpopulations of keratocytes located at different stromal levels were identified in both human and rabbit corneas, suggesting that keratocytes are not functionally homogeneous. In addition, the density of the stromal neural plexus appeared to be greater in rabbits than in humans. Clear differences between human and rabbit corneas were observed in the collagen arrangement in Descemet's membrane, which may reflect their different biomechanical requirements.

Keywords: Keratocytes, cornea, ultrastructure

Full Text

The Full Text of this article is available as a PDF (881.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen T. D., Aplin J. D., Campbell S. Surface visualisation of tissue interfaces by scanning electron microscopy. Methods for exposure of the basal lamina and associated structures in human amnion. Scanning Microsc. 1988 Dec;2(4):2067–2076. [PubMed] [Google Scholar]
  2. Beuerman R. W., Pedroza L. Ultrastructure of the human cornea. Microsc Res Tech. 1996 Mar 1;33(4):320–335. doi: 10.1002/(SICI)1097-0029(19960301)33:4<320::AID-JEMT3>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  3. Binder P. S., Rock M. E., Schmidt K. C., Anderson J. A. High-voltage electron microscopy of normal human cornea. Invest Ophthalmol Vis Sci. 1991 Jul;32(8):2234–2243. [PubMed] [Google Scholar]
  4. Birk D. E., Trelstad R. L. Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts. J Cell Biol. 1984 Dec;99(6):2024–2033. doi: 10.1083/jcb.99.6.2024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cintron C., Szamier R. B., Hassinger L. C., Kublin C. L. Scanning electron microscopy of rabbit corneal scars. Invest Ophthalmol Vis Sci. 1982 Jul;23(1):50–63. [PubMed] [Google Scholar]
  6. DeRuiter M. C., Poelmann R. E., Mentink M. M., Vaniperen L., Gittenberger-De Groot A. C. Early formation of the vascular system in quail embryos. Anat Rec. 1993 Feb;235(2):261–274. doi: 10.1002/ar.1092350210. [DOI] [PubMed] [Google Scholar]
  7. Doughty M. J. On the evaluation of the corneal epithelial surface by scanning electron microscopy. Optom Vis Sci. 1990 Oct;67(10):735–756. doi: 10.1097/00006324-199010000-00001. [DOI] [PubMed] [Google Scholar]
  8. Evan A. P., Dail W. G., Dammrose D., Palmer C. Scanning electron microscopy of cell surfaces following removal of extracellular material. Anat Rec. 1976 Aug;185(4):433–445. doi: 10.1002/ar.1091850405. [DOI] [PubMed] [Google Scholar]
  9. Green K. Corneal endothelial structure and function under normal and toxic conditions. Cell Biol Rev. 1991;25(3):169–207. [PubMed] [Google Scholar]
  10. Harding C. V., Bagchi M., Weinsieder A., Peters V. A comparative study of corneal epithelial cell surfaces utilizing the scanning electron microscope. Invest Ophthalmol. 1974 Dec;13(12):906–912. [PubMed] [Google Scholar]
  11. Jacot J. L., Glover J. P., Robison W. G., Jr Computer analysis of corneal innervation density using a novel double stain in rat corneal whole mounts. J Anat. 1997 Aug;191(Pt 2):191–199. doi: 10.1046/j.1469-7580.1997.19120191.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KAYE G. I., PAPPAS G. D. Studies on the cornea. I. The fine structure of the rabbit cornea and the uptake and transport of colloidal particles by the cornea in vivo. J Cell Biol. 1962 Mar;12:457–479. doi: 10.1083/jcb.12.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Komai Y., Ushiki T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci. 1991 Jul;32(8):2244–2258. [PubMed] [Google Scholar]
  14. Lemp M. A., Holly F. J., Iwata S., Dohlman C. H. The precorneal tear film. I. Factors in spreading and maintaining a continuous tear film over the corneal surface. Arch Ophthalmol. 1970 Jan;83(1):89–94. doi: 10.1001/archopht.1970.00990030091017. [DOI] [PubMed] [Google Scholar]
  15. Lim C. H., Ruskell G. L. Corneal nerve access in monkeys. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1978 Nov 8;208(1-3):15–23. doi: 10.1007/BF00406978. [DOI] [PubMed] [Google Scholar]
  16. Marshall G. E., Konstas A. G., Lee W. R. Collagens in ocular tissues. Br J Ophthalmol. 1993 Aug;77(8):515–524. doi: 10.1136/bjo.77.8.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maurice D. M., Monroe F. Cohesive strength of corneal lamellae. Exp Eye Res. 1990 Jan;50(1):59–63. doi: 10.1016/0014-4835(90)90011-i. [DOI] [PubMed] [Google Scholar]
  18. Møller-Pedersen T., Ehlers N. A three-dimensional study of the human corneal keratocyte density. Curr Eye Res. 1995 Jun;14(6):459–464. doi: 10.3109/02713689509003756. [DOI] [PubMed] [Google Scholar]
  19. Müller L. J., Pels L., Vrensen G. F. Novel aspects of the ultrastructural organization of human corneal keratocytes. Invest Ophthalmol Vis Sci. 1995 Dec;36(13):2557–2567. [PubMed] [Google Scholar]
  20. Müller L. J., Pels L., Vrensen G. F. Ultrastructural organization of human corneal nerves. Invest Ophthalmol Vis Sci. 1996 Mar;37(4):476–488. [PubMed] [Google Scholar]
  21. Nishida T., Yasumoto K., Otori T., Desaki J. The network structure of corneal fibroblasts in the rat as revealed by scanning electron microscopy. Invest Ophthalmol Vis Sci. 1988 Dec;29(12):1887–1890. [PubMed] [Google Scholar]
  22. Ohtani O. Three-dimensional organization of the connective tissue fibers of the human pancreas: a scanning electron microscopic study of NaOH treated-tissues. Arch Histol Jpn. 1987 Dec;50(5):557–566. doi: 10.1679/aohc.50.557. [DOI] [PubMed] [Google Scholar]
  23. POLACK F. M. Morphology of the cornea. I. Study with silver stains. Am J Ophthalmol. 1961 May;51:1051–1056. doi: 10.1016/0002-9394(61)91794-9. [DOI] [PubMed] [Google Scholar]
  24. Poole C. A., Brookes N. H., Clover Confocal imaging of the keratocyte network in porcine cornea using the fixable vital dye 5-chloromethylfluorescein diacetate. Curr Eye Res. 1996 Feb;15(2):165–174. doi: 10.3109/02713689608997410. [DOI] [PubMed] [Google Scholar]
  25. Schimmelpfennig B. Nerve structures in human central corneal epithelium. Graefes Arch Clin Exp Ophthalmol. 1982;218(1):14–20. doi: 10.1007/BF02134093. [DOI] [PubMed] [Google Scholar]
  26. Tervo T. Consecutive demonstration of nerves containing catecholamine and acetylcholinesterase in the rat cornea. Histochemistry. 1977 Feb 1;50(4):291–299. doi: 10.1007/BF00507122. [DOI] [PubMed] [Google Scholar]
  27. Watsky M. A. Keratocyte gap junctional communication in normal and wounded rabbit corneas and human corneas. Invest Ophthalmol Vis Sci. 1995 Dec;36(13):2568–2576. [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES