Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Dec;199(Pt 6):631–643. doi: 10.1046/j.1469-7580.2001.19960631.x

Fibre type regionalisation in lower hindlimb muscles of rabbit, rat and mouse: a comparative study

L C WANG 1,, D KERNELL 1
PMCID: PMC1468381  PMID: 11787817

Abstract

The topographical distribution of different fibre types in muscles of the lower hindlimb in rabbits and mice was quantitatively determined. The results were compared to those previously obtained, using the same new quantification methods, in homologous muscles of the rat. Type I fibres (‘slow’) were identified using myofibrillar ATPase histochemistry and mapped out at the mid proximo-distal level for 11 ‘fast’ muscles in the rabbit and 7 ‘fast’ muscles in the mouse. For the slow soleus muscle the procedure was undertaken for the type II fibres. Furthermore, for 5 of the ‘fast’ muscles from each animal species (extensor digitorum longus; flexor digitorum and hallucis longus; gastrocnemius medialis; peroneus longus; tibialis anterior), several more proximal and distal cross-sectional levels were also analysed. All the investigated ‘fast’ muscles showed a significant degree of topographical eccentricity in the midlevel distribution of type I fibres. For most muscles, the direction of this ‘vector regionalisation’ of type I fibres was similar between the three animal species. For homologous muscles, the degree of vector regionalisation was significantly different: mouse > rat > rabbit. The relative area of the region containing the type I fibres, inversely related to the degree of ‘area regionalisation’, was also significantly different: mouse < rat < rabbit. Also within each animal species, muscles with a marked degree of vector regionalisation tended to show a marked area regionalisation. Proximo-distal differences in type I fibre density were observed in all the three species of animals; also these patterns showed marked inter-species differences. The findings demonstrate the general occurrence of, and systematic relationships between, different aspects of type I fibre regionalisation. The observed interspecies differences suggest that the expression of this phenomenon is adapted to differing functional needs.

Keywords: Myosin ATPase, slow muscle fibres, fibre type differentiation, hindlimb organisation

Full Text

The Full Text of this article is available as a PDF (465.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acosta L., Jr, Roy R. R. Fiber-type composition of selected hindlimb muscles of a primate (cynomolgus monkey). Anat Rec. 1987 Jun;218(2):136–141. doi: 10.1002/ar.1092180207. [DOI] [PubMed] [Google Scholar]
  2. Ariano M. A., Armstrong R. B., Edgerton V. R. Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem. 1973 Jan;21(1):51–55. doi: 10.1177/21.1.51. [DOI] [PubMed] [Google Scholar]
  3. Armstrong R. B., Phelps R. O. Muscle fiber type composition of the rat hindlimb. Am J Anat. 1984 Nov;171(3):259–272. doi: 10.1002/aja.1001710303. [DOI] [PubMed] [Google Scholar]
  4. Armstrong R. B., Saubert C. W., 4th, Seeherman H. J., Taylor C. R. Distribution of fiber types in locomotory muscles of dogs. Am J Anat. 1982 Jan;163(1):87–98. doi: 10.1002/aja.1001630107. [DOI] [PubMed] [Google Scholar]
  5. Bergh U., Ekblom B. Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol Scand. 1979 Sep;107(1):33–37. doi: 10.1111/j.1748-1716.1979.tb06439.x. [DOI] [PubMed] [Google Scholar]
  6. Brandstetter A. M., Picard B., Geay Y. Regional variations of muscle fibre characteristic in m. semitendinosus of growing cattle. J Muscle Res Cell Motil. 1997 Feb;18(1):57–62. doi: 10.1023/a:1018628916235. [DOI] [PubMed] [Google Scholar]
  7. Brooke M. H., Kaiser K. K. Muscle fiber types: how many and what kind? Arch Neurol. 1970 Oct;23(4):369–379. doi: 10.1001/archneur.1970.00480280083010. [DOI] [PubMed] [Google Scholar]
  8. Bruce V., Turek R. J. Muscle fibre variation in the gluteus medius of the horse. Equine Vet J. 1985 Jul;17(4):317–321. doi: 10.1111/j.2042-3306.1985.tb02508.x. [DOI] [PubMed] [Google Scholar]
  9. Chanaud C. M., Pratt C. A., Loeb G. E. Functionally complex muscles of the cat hindlimb. II. Mechanical and architectural heterogenity within the biceps femoris. Exp Brain Res. 1991;85(2):257–270. doi: 10.1007/BF00229405. [DOI] [PubMed] [Google Scholar]
  10. Condon K., Silberstein L., Blau H. M., Thompson W. J. Development of muscle fiber types in the prenatal rat hindlimb. Dev Biol. 1990 Apr;138(2):256–274. doi: 10.1016/0012-1606(90)90196-p. [DOI] [PubMed] [Google Scholar]
  11. English A. W., Letbetter W. D. A histochemical analysis of identified compartments of cat lateral gastrocnemius muscle. Anat Rec. 1982 Oct;204(2):123–130. doi: 10.1002/ar.1092040205. [DOI] [PubMed] [Google Scholar]
  12. Fuentes I., Cobos A. R., Segade L. A. Muscle fibre types and their distribution in the biceps and triceps brachii of the rat and rabbit. J Anat. 1998 Feb;192(Pt 2):203–210. doi: 10.1046/j.1469-7580.1998.19220203.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GORDON G., PHILLIPS C. G. Slow and rapid components in a flexor muscle. Q J Exp Physiol Cogn Med Sci. 1953;38(1):35–45. doi: 10.1113/expphysiol.1953.sp001005. [DOI] [PubMed] [Google Scholar]
  14. Guth L., Samaha F. J. Procedure for the histochemical demonstration of actomyosin ATPase. Exp Neurol. 1970 Aug;28(2):365–367. [PubMed] [Google Scholar]
  15. Henriksson-Larsén K. B., Lexell J., Sjöström M. Distribution of different fibre types in human skeletal muscles. I. Method for the preparation and analysis of cross-sections of whole tibialis anterior. Histochem J. 1983 Feb;15(2):167–178. doi: 10.1007/BF01042285. [DOI] [PubMed] [Google Scholar]
  16. Johnson M. A., Polgar J., Weightman D., Appleton D. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci. 1973 Jan;18(1):111–129. doi: 10.1016/0022-510x(73)90023-3. [DOI] [PubMed] [Google Scholar]
  17. Kernell D. Muscle regionalization. Can J Appl Physiol. 1998 Feb;23(1):1–22. doi: 10.1139/h98-001. [DOI] [PubMed] [Google Scholar]
  18. Kernell D., Wang L. C. Simple methods for quantifying the spatial distribution of different categories of motoneuronal nerve endings, using measurements of muscle regionalization. J Neurosci Methods. 2000 Jul 31;100(1-2):79–83. doi: 10.1016/s0165-0270(00)00236-3. [DOI] [PubMed] [Google Scholar]
  19. Laidlaw D. H., Callister R. J., Stuart D. G. Fiber-type composition of hindlimb muscles in the turtle, Pseudemys (Trachemys) scripta elegans. J Morphol. 1995 Aug;225(2):193–211. doi: 10.1002/jmor.1052250205. [DOI] [PubMed] [Google Scholar]
  20. Lexell J., Henriksson-Larsén K., Sjöström M. Distribution of different fibre types in human skeletal muscles. 2. A study of cross-sections of whole m. vastus lateralis. Acta Physiol Scand. 1983 Jan;117(1):115–122. doi: 10.1111/j.1748-1716.1983.tb07185.x. [DOI] [PubMed] [Google Scholar]
  21. Lexell J., Jarvis J. C., Currie J., Downham D. Y., Salmons S. Fibre type composition of rabbit tibialis anterior and extensor digitorum longus muscles. J Anat. 1994 Aug;185(Pt 1):95–101. [PMC free article] [PubMed] [Google Scholar]
  22. Lind A., Kernell D. Myofibrillar ATPase histochemistry of rat skeletal muscles: a "two-dimensional" quantitative approach. J Histochem Cytochem. 1991 May;39(5):589–597. doi: 10.1177/39.5.1826695. [DOI] [PubMed] [Google Scholar]
  23. Lobley G. E., Wilson A. B., Bruce A. S. An estimation of the fibre type compostion of eleven skeletal muscles from New Zealand White rabbits between weaning and early maturity. J Anat. 1977 Apr;123(Pt 2):501–513. [PMC free article] [PubMed] [Google Scholar]
  24. Narusawa M., Fitzsimons R. B., Izumo S., Nadal-Ginard B., Rubinstein N. A., Kelly A. M. Slow myosin in developing rat skeletal muscle. J Cell Biol. 1987 Mar;104(3):447–459. doi: 10.1083/jcb.104.3.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Parry D. J., Wilkinson R. S. The effect of reinnervation on the distribution of muscle fibre types in the tibialis anterior muscle of the mouse. Can J Physiol Pharmacol. 1990 May;68(5):596–602. doi: 10.1139/y90-086. [DOI] [PubMed] [Google Scholar]
  26. Pullen A. H. The distribution and relative sized of fibre types in the extensor digitorum longus and soleus muscles of the adult rat. J Anat. 1977 Apr;123(Pt 2):467–486. [PMC free article] [PubMed] [Google Scholar]
  27. Pullen A. H. The distribution and relative sizes of three histochemical fibre types in the rat tibialis anterior muscle. J Anat. 1977 Feb;123(Pt 1):1–19. [PMC free article] [PubMed] [Google Scholar]
  28. Rafuse V. F., Gordon T. Self-reinnervated cat medial gastrocnemius muscles. II. analysis of the mechanisms and significance of fiber type grouping in reinnervated muscles. J Neurophysiol. 1996 Jan;75(1):282–297. doi: 10.1152/jn.1996.75.1.282. [DOI] [PubMed] [Google Scholar]
  29. Ranatunga K. W. Temperature-dependence of shortening velocity and rate of isometric tension development in rat skeletal muscle. J Physiol. 1982 Aug;329:465–483. doi: 10.1113/jphysiol.1982.sp014314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sargeant A. J. Effect of muscle temperature on leg extension force and short-term power output in humans. Eur J Appl Physiol Occup Physiol. 1987;56(6):693–698. doi: 10.1007/BF00424812. [DOI] [PubMed] [Google Scholar]
  31. Sickles D. W., Pinkstaff C. A. Comparative histochemical study of prosimian primate hindlimb muscles. II. Populations of fiber types. Am J Anat. 1981 Feb;160(2):187–194. doi: 10.1002/aja.1001600205. [DOI] [PubMed] [Google Scholar]
  32. Spurway N. C. Objective characterization of cells in terms of microscopical parameters: an example from muscle histochemistry. Histochem J. 1981 Mar;13(2):269–317. doi: 10.1007/BF01006884. [DOI] [PubMed] [Google Scholar]
  33. Totland G. K., Kryvi H. Distribution patterns of muscle fibre types in major muscles of the bull (Bos taurus). Anat Embryol (Berl) 1991;184(5):441–450. doi: 10.1007/BF01236050. [DOI] [PubMed] [Google Scholar]
  34. Wang L. C., Kernell D. Proximo-distal organization and fibre type regionalization in rat hindlimb muscles. J Muscle Res Cell Motil. 2000;21(6):587–598. doi: 10.1023/a:1026584307999. [DOI] [PubMed] [Google Scholar]
  35. Wang L. C., Kernell D. Quantification of fibre type regionalisation: an analysis of lower hindlimb muscles in the rat. J Anat. 2001 Mar;198(Pt 3):295–308. doi: 10.1046/j.1469-7580.2001.19830295.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. van den Hoven R., Wensing T., Breukink H. J., Meijer A. E., Kruip T. A. Variation of fiber types in the triceps brachii, longissimus dorsi, gluteus medius, and biceps femoris of horses. Am J Vet Res. 1985 Apr;46(4):939–941. [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES