Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Dec;199(Pt 6):709–716. doi: 10.1046/j.1469-7580.2001.19960709.x

Comparative histochemical composition of muscle fibres in a pre- and a postvertebral muscle of the cervical spine

L C BOYD-CLARK 1 , C A BRIGGS 1 , M P GALEA 2 ,
PMCID: PMC1468388  PMID: 11787824

Abstract

References to histochemistry are extensive for human limb muscles but occur less frequently in relation to vertebral muscle. Most vertebral muscle literature has been concerned with muscle fibre characteristics in the lumbar and thoracic spine, due in large part to the incidence of low back pain and idiopathic scoliosis. However few studies have investigated the histochemical composition of neck muscles in humans: and, to our knowledge, no previous study has examined the antagonistic longus colli and multifidus muscle pair. In addition, while age-related segmental degeneration is most prominent between C5 and C7, it is not known whether these osteoligamentous changes are paralleled by changes in muscle fibre ratio. Tissue blocks comprising muscle and bone from C5–C7 segments were harvested at autopsy from 16 subjects with ages ranging from 4 to 77 years. The prevertebral longus colli and postvertebral multifidus muscle pairs were randomly selected from one or other side in each subject. The tissue was frozen, sectioned and histochemically stained for myofibrillar adenosine triphosphatase. Analysis of muscle fibre types was performed by light microscopy. Wilcoxon paired t-tests were used to ascertain whether intramuscular and intermuscular differences in fibre composition were significant. In addition, correlation and regression analyses were used to determine whether fibre type proportions changed in either muscle with increasing age. The present study has revealed histochemical differences between longus colli and multifidus at the level of the C5–C7 vertebral segments. Multifidus comprises a significantly greater proportion of type I than type II fibres. Longus colli comprises a significantly greater proportion of type II fibres than multifidus. Further there were no changes in fibre type proportion in either muscle with increasing age. These observations suggest that longus colli responds equally to postural and phasic demands, whereas multifidus is predominantly postural. Also it would appear that age-related structural alterations in lower cervical segments are not paralleled by changes in muscle fibre ratio.

Keywords: Longus colli, multifidus, antagonist, type I, type II

Full Text

The Full Text of this article is available as a PDF (479.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abernethy P. J., Thayer R., Taylor A. W. Acute and chronic responses of skeletal muscle to endurance and sprint exercise. A review. Sports Med. 1990 Dec;10(6):365–389. doi: 10.2165/00007256-199010060-00004. [DOI] [PubMed] [Google Scholar]
  2. Andersen P., Henriksson J. Training induced changes in the subgroups of human type II skeletal muscle fibres. Acta Physiol Scand. 1977 Jan;99(1):123–125. doi: 10.1111/j.1748-1716.1977.tb10361.x. [DOI] [PubMed] [Google Scholar]
  3. Bayley J. C., Yoo J. U., Kruger D. M., Schlegel J. The role of distraction in improving the space available for the cord in cervical spondylosis. Spine (Phila Pa 1976) 1995 Apr 1;20(7):771–775. doi: 10.1097/00007632-199504000-00005. [DOI] [PubMed] [Google Scholar]
  4. Brichta A. M., Callister R. J., Peterson E. H. Quantitative analysis of cervical musculature in rats: histochemical composition and motor pool organization. I. Muscles of the spinal accessory complex. J Comp Neurol. 1987 Jan 15;255(3):351–368. doi: 10.1002/cne.902550304. [DOI] [PubMed] [Google Scholar]
  5. Callister R. J., Brichta A. M., Peterson E. H. Quantitative analysis of cervical musculature in rats: histochemical composition and motor pool organization. II. Deep dorsal muscles. J Comp Neurol. 1987 Jan 15;255(3):369–385. doi: 10.1002/cne.902550305. [DOI] [PubMed] [Google Scholar]
  6. Conley M. S., Meyer R. A., Bloomberg J. J., Feeback D. L., Dudley G. A. Noninvasive analysis of human neck muscle function. Spine (Phila Pa 1976) 1995 Dec 1;20(23):2505–2512. doi: 10.1097/00007632-199512000-00009. [DOI] [PubMed] [Google Scholar]
  7. Dhoot G. K., Pearce G. W. Transformation of fibre types in muscular dystrophies. J Neurol Sci. 1984 Jul;65(1):17–28. doi: 10.1016/0022-510x(84)90063-7. [DOI] [PubMed] [Google Scholar]
  8. Elder G. C., Bradbury K., Roberts R. Variability of fiber type distributions within human muscles. J Appl Physiol Respir Environ Exerc Physiol. 1982 Dec;53(6):1473–1480. doi: 10.1152/jappl.1982.53.6.1473. [DOI] [PubMed] [Google Scholar]
  9. Eriksson O., Eriksson A., Ringqvist M., Thornell L. E. The reliability of histochemical fibre typing of human necropsy muscles. Histochemistry. 1980;65(3):193–205. doi: 10.1007/BF00493169. [DOI] [PubMed] [Google Scholar]
  10. Fidler M. W., Jowett R. L., Troup J. D. Myosin ATPase activity in multifidus muscle from cases of lumbar spinal derangement. J Bone Joint Surg Br. 1975 May;57(2):220–227. [PubMed] [Google Scholar]
  11. Ford D. M., Bagnall K. M., McFadden K. D., Greenhill B. J., Raso V. J. Paraspinal muscle imbalance in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 1984 May-Jun;9(4):373–376. doi: 10.1097/00007632-198405000-00008. [DOI] [PubMed] [Google Scholar]
  12. Goldspink G., Gelder S., Clapison L., Overfield P. Pre- and post-rigor fixation of muscle. J Anat. 1973 Jan;114(Pt 1):1–6. [PMC free article] [PubMed] [Google Scholar]
  13. Grimby G., Aniansson A., Zetterberg C., Saltin B. Is there a change in relative muscle fibre composition with age? Clin Physiol. 1984 Apr;4(2):189–194. doi: 10.1111/j.1475-097x.1984.tb00235.x. [DOI] [PubMed] [Google Scholar]
  14. Heffron J. J., Hegarty P. V. Evidence for a relationship between ATP hydrolysis and changes in extracellular space and fibre diameter during rigor development in skeletal muscle. Comp Biochem Physiol A Comp Physiol. 1974 Sep 1;49(1A):43–56. doi: 10.1016/0300-9629(74)90540-4. [DOI] [PubMed] [Google Scholar]
  15. Hämäläinen N., Pette D. The histochemical profiles of fast fiber types IIB, IID, and IIA in skeletal muscles of mouse, rat, and rabbit. J Histochem Cytochem. 1993 May;41(5):733–743. doi: 10.1177/41.5.8468455. [DOI] [PubMed] [Google Scholar]
  16. JOSEPH J., McCOLL I. Electromyography of muscles of posture: posterior vertebral muscles in males. J Physiol. 1961 Jun;157:33–37. doi: 10.1113/jphysiol.1961.sp006703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson M. A., Polgar J., Weightman D., Appleton D. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci. 1973 Jan;18(1):111–129. doi: 10.1016/0022-510x(73)90023-3. [DOI] [PubMed] [Google Scholar]
  18. Joosab M., Torode M., Rao P. V. Preliminary findings on the effect of load-carrying to the structural integrity of the cervical spine. Surg Radiol Anat. 1994;16(4):393–398. doi: 10.1007/BF01627659. [DOI] [PubMed] [Google Scholar]
  19. Jowett R. L., Fidler M. W., Troup J. D. Histochemical changes in the multifidus in mechanical derangements of the spine. Orthop Clin North Am. 1975 Jan;6(1):145–161. [PubMed] [Google Scholar]
  20. Klara P. M., Foley K. Surgical treatment of osteophytes and calcified discs of the cervical spine. Neurosurg Clin N Am. 1993 Jan;4(1):53–60. [PubMed] [Google Scholar]
  21. Lexell J., Henriksson-Larsén K., Sjöström M. Distribution of different fibre types in human skeletal muscles. 2. A study of cross-sections of whole m. vastus lateralis. Acta Physiol Scand. 1983 Jan;117(1):115–122. doi: 10.1111/j.1748-1716.1983.tb07185.x. [DOI] [PubMed] [Google Scholar]
  22. Lieber R. L., Fridén J. O., Hargens A. R., Danzig L. A., Gershuni D. H. Differential response of the dog quadriceps muscle to external skeletal fixation of the knee. Muscle Nerve. 1988 Mar;11(3):193–201. doi: 10.1002/mus.880110302. [DOI] [PubMed] [Google Scholar]
  23. Lindman R., Eriksson A., Thornell L. E. Fiber type composition of the human female trapezius muscle: enzyme-histochemical characteristics. Am J Anat. 1991 Apr;190(4):385–392. doi: 10.1002/aja.1001900406. [DOI] [PubMed] [Google Scholar]
  24. Lindman R., Eriksson A., Thornell L. E. Fiber type composition of the human male trapezius muscle: enzyme-histochemical characteristics. Am J Anat. 1990 Nov;189(3):236–244. doi: 10.1002/aja.1001890306. [DOI] [PubMed] [Google Scholar]
  25. Macnab I. Cervical spondylosis. Clin Orthop Relat Res. 1975;(109):69–77. doi: 10.1097/00003086-197506000-00009. [DOI] [PubMed] [Google Scholar]
  26. Mannion A. F., Dumas G. A., Cooper R. G., Espinosa F. J., Faris M. W., Stevenson J. M. Muscle fibre size and type distribution in thoracic and lumbar regions of erector spinae in healthy subjects without low back pain: normal values and sex differences. J Anat. 1997 May;190(Pt 4):505–513. doi: 10.1046/j.1469-7580.1997.19040505.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mayoux-Benhamou M. A., Revel M., Vallée C., Roudier R., Barbet J. P., Bargy F. Longus colli has a postural function on cervical curvature. Surg Radiol Anat. 1994;16(4):367–371. doi: 10.1007/BF01627655. [DOI] [PubMed] [Google Scholar]
  28. Meier M. P., Klein M. P., Krebs D., Grob D., Müntener M. Fiber transformations in multifidus muscle of young patients with idiopathic scoliosis. Spine (Phila Pa 1976) 1997 Oct 15;22(20):2357–2364. doi: 10.1097/00007632-199710150-00008. [DOI] [PubMed] [Google Scholar]
  29. Ng J. K., Richardson C. A., Kippers V., Parnianpour M. Relationship between muscle fiber composition and functional capacity of back muscles in healthy subjects and patients with back pain. J Orthop Sports Phys Ther. 1998 Jun;27(6):389–402. doi: 10.2519/jospt.1998.27.6.389. [DOI] [PubMed] [Google Scholar]
  30. Rantanen J., Hurme M., Falck B., Alaranta H., Nykvist F., Lehto M., Einola S., Kalimo H. The lumbar multifidus muscle five years after surgery for a lumbar intervertebral disc herniation. Spine (Phila Pa 1976) 1993 Apr;18(5):568–574. doi: 10.1097/00007632-199304000-00008. [DOI] [PubMed] [Google Scholar]
  31. Rantanen J., Rissanen A., Kalimo H. Lumbar muscle fiber size and type distribution in normal subjects. Eur Spine J. 1994;3(6):331–335. doi: 10.1007/BF02200146. [DOI] [PubMed] [Google Scholar]
  32. Richmond F. J., Armstrong J. B. Fiber architecture and histochemistry in the cat neck muscle, biventer cervicis. J Neurophysiol. 1988 Jul;60(1):46–59. doi: 10.1152/jn.1988.60.1.46. [DOI] [PubMed] [Google Scholar]
  33. Richmond F. J., MacGillis D. R., Scott D. A. Muscle-fiber compartmentalization in cat splenius muscles. J Neurophysiol. 1985 Apr;53(4):868–885. doi: 10.1152/jn.1985.53.4.868. [DOI] [PubMed] [Google Scholar]
  34. Richmond F. J., Singh K., Corneil B. D. Marked non-uniformity of fiber-type composition in the primate suboccipital muscle obliquus capitis inferior. Exp Brain Res. 1999 Mar;125(1):14–18. doi: 10.1007/s002210050652. [DOI] [PubMed] [Google Scholar]
  35. Rose S. J., Rothstein J. M. Muscle mutability. Part 1. General concepts and adaptations to altered patterns of use. Phys Ther. 1982 Dec;62(12):1773–1787. doi: 10.1093/ptj/62.12.1773. [DOI] [PubMed] [Google Scholar]
  36. Selbie W. S., Thomson D. B., Richmond F. J. Suboccipital muscles in the cat neck: morphometry and histochemistry of the rectus capitis muscle complex. J Morphol. 1993 Apr;216(1):47–63. doi: 10.1002/jmor.1052160107. [DOI] [PubMed] [Google Scholar]
  37. Sirca A., Kostevc V. The fibre type composition of thoracic and lumbar paravertebral muscles in man. J Anat. 1985 Aug;141:131–137. [PMC free article] [PubMed] [Google Scholar]
  38. Thorstensson A., Carlson H. Fibre types in human lumbar back muscles. Acta Physiol Scand. 1987 Oct;131(2):195–202. doi: 10.1111/j.1748-1716.1987.tb08226.x. [DOI] [PubMed] [Google Scholar]
  39. Uhlig Y., Weber B. R., Grob D., Müntener M. Fiber composition and fiber transformations in neck muscles of patients with dysfunction of the cervical spine. J Orthop Res. 1995 Mar;13(2):240–249. doi: 10.1002/jor.1100130212. [DOI] [PubMed] [Google Scholar]
  40. Vasavada A. N., Li S., Delp S. L. Influence of muscle morphometry and moment arms on the moment-generating capacity of human neck muscles. Spine (Phila Pa 1976) 1998 Feb 15;23(4):412–422. doi: 10.1097/00007632-199802150-00002. [DOI] [PubMed] [Google Scholar]
  41. Zetterberg C., Aniansson A., Grimby G. Morphology of the paravertebral muscles in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 1983 Jul-Aug;8(5):457–462. doi: 10.1097/00007632-198307000-00003. [DOI] [PubMed] [Google Scholar]
  42. Zhao W. P., Kawaguchi Y., Matsui H., Kanamori M., Kimura T. Histochemistry and morphology of the multifidus muscle in lumbar disc herniation: comparative study between diseased and normal sides. Spine (Phila Pa 1976) 2000 Sep 1;25(17):2191–2199. doi: 10.1097/00007632-200009010-00009. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES