Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Aug 1;25(15):3074–3081. doi: 10.1093/nar/25.15.3074

Comparison of the specificities and catalytic activities of hammerhead ribozymes and DNA enzymes with respect to the cleavage of BCR-ABL chimeric L6 (b2a2) mRNA.

T Kuwabara 1, M Warashina 1, T Tanabe 1, K Tani 1, S Asano 1, K Taira 1
PMCID: PMC146844  PMID: 9224607

Abstract

With the eventual goal of developing a treatment for chronic myelogenous leukemia (CML), attempts have been made to design hammerhead ribozymes that can specifically cleave BCR-ABL fusion mRNA. In the case of L6 BCR-ABL fusion mRNA (b2a2 type; BCR exon 2 is fused to ABL exon 2), which has no effective cleavage sites for conventional hammerhead ribozymes near the BCR-ABL junction, it has proved very difficult to cleave the chimeric mRNA specifically. Several hammerhead ribozymes with relatively long junction-recognition sequences have poor substrate-specificity. Therefore, we explored the possibility of using newly selected DNA enzymes that can cleave RNA molecules with high activity to cleave L6 BCR-ABL fusion (b2a2) mRNA. In contrast to the results with the conventional ribozymes, the newly designed DNA enzymes, having higher flexibility for selection of cleavage sites, were able to cleave this chimeric RNA molecule specifically at sites close to the junction. Cleavage occurred only within the abnormal BCR-ABL mRNA, without any cleavage of the normal ABL or BCR mRNA. Thus, these chemically synthesized DNA enzymes seem to be potentially useful for application in vivo , especially for the treatment of CML, if we can develop exogenous delivery strategies.

Full Text

The Full Text of this article is available as a PDF (898.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman S. RNA enzyme-directed gene therapy. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10898–10900. doi: 10.1073/pnas.90.23.10898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amontov S., Nishikawa S., Taira K. Dependence on Mg2+ ions of the activities of dimeric hammerhead minizymes. FEBS Lett. 1996 May 20;386(2-3):99–102. doi: 10.1016/0014-5793(96)00419-x. [DOI] [PubMed] [Google Scholar]
  3. Bartram C. R., de Klein A., Hagemeijer A., van Agthoven T., Geurts van Kessel A., Bootsma D., Grosveld G., Ferguson-Smith M. A., Davies T., Stone M. Translocation of c-ab1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature. 1983 Nov 17;306(5940):277–280. doi: 10.1038/306277a0. [DOI] [PubMed] [Google Scholar]
  4. Birikh K. R., Heaton P. A., Eckstein F. The structure, function and application of the hammerhead ribozyme. Eur J Biochem. 1997 Apr 1;245(1):1–16. doi: 10.1111/j.1432-1033.1997.t01-3-00001.x. [DOI] [PubMed] [Google Scholar]
  5. Breaker R. R. DNA enzymes. Nat Biotechnol. 1997 May;15(5):427–431. doi: 10.1038/nbt0597-427. [DOI] [PubMed] [Google Scholar]
  6. Cameron F. H., Jennings P. A. Multiple domains in a ribozyme construct confer increased suppressive activity in monkey cells. Antisense Res Dev. 1994 Summer;4(2):87–94. doi: 10.1089/ard.1994.4.87. [DOI] [PubMed] [Google Scholar]
  7. Christoffersen R. E., Marr J. J. Ribozymes as human therapeutic agents. J Med Chem. 1995 Jun 9;38(12):2023–2037. doi: 10.1021/jm00012a001. [DOI] [PubMed] [Google Scholar]
  8. Dahm S. C., Derrick W. B., Uhlenbeck O. C. Evidence for the role of solvated metal hydroxide in the hammerhead cleavage mechanism. Biochemistry. 1993 Dec 7;32(48):13040–13045. doi: 10.1021/bi00211a013. [DOI] [PubMed] [Google Scholar]
  9. Ferbeyre G., Bratty J., Chen H., Cedergren R. Cell cycle arrest promotes trans-hammerhead ribozyme action in yeast. J Biol Chem. 1996 Aug 9;271(32):19318–19323. doi: 10.1074/jbc.271.32.19318. [DOI] [PubMed] [Google Scholar]
  10. Groffen J., Stephenson J. R., Heisterkamp N., de Klein A., Bartram C. R., Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984 Jan;36(1):93–99. doi: 10.1016/0092-8674(84)90077-1. [DOI] [PubMed] [Google Scholar]
  11. Haseloff J., Gerlach W. L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature. 1988 Aug 18;334(6183):585–591. doi: 10.1038/334585a0. [DOI] [PubMed] [Google Scholar]
  12. Heidenreich O., Eckstein F. Hammerhead ribozyme-mediated cleavage of the long terminal repeat RNA of human immunodeficiency virus type 1. J Biol Chem. 1992 Jan 25;267(3):1904–1909. [PubMed] [Google Scholar]
  13. Heisterkamp N., Stephenson J. R., Groffen J., Hansen P. F., de Klein A., Bartram C. R., Grosveld G. Localization of the c-ab1 oncogene adjacent to a translocation break point in chronic myelocytic leukaemia. Nature. 1983 Nov 17;306(5940):239–242. doi: 10.1038/306239a0. [DOI] [PubMed] [Google Scholar]
  14. Hertel K. J., Herschlag D., Uhlenbeck O. C. Specificity of hammerhead ribozyme cleavage. EMBO J. 1996 Jul 15;15(14):3751–3757. [PMC free article] [PubMed] [Google Scholar]
  15. Homann M., Tzortzakaki S., Rittner K., Sczakiel G., Tabler M. Incorporation of the catalytic domain of a hammerhead ribozyme into antisense RNA enhances its inhibitory effect on the replication of human immunodeficiency virus type 1. Nucleic Acids Res. 1993 Jun 25;21(12):2809–2814. doi: 10.1093/nar/21.12.2809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. James H., Mills K., Gibson I. Investigating and improving the specificity of ribozymes directed against the bcr-abl translocation. Leukemia. 1996 Jun;10(6):1054–1064. [PubMed] [Google Scholar]
  17. Kawasaki H., Ohkawa J., Tanishige N., Yoshinari K., Murata T., Yokoyama K. K., Taira K. Selection of the best target site for ribozyme-mediated cleavage within a fusion gene for adenovirus E1A-associated 300 kDa protein (p300) and luciferase. Nucleic Acids Res. 1996 Aug 1;24(15):3010–3016. doi: 10.1093/nar/24.15.3010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kearney P., Wright L. A., Milliken S., Biggs J. C. Improved specificity of ribozyme-mediated cleavage of bcr-abl mRNA. Exp Hematol. 1995 Aug;23(9):986–989. [PubMed] [Google Scholar]
  19. Kiehntopf M., Brach M. A., Licht T., Petschauer S., Karawajew L., Kirschning C., Herrmann F. Ribozyme-mediated cleavage of the MDR-1 transcript restores chemosensitivity in previously resistant cancer cells. EMBO J. 1994 Oct 3;13(19):4645–4652. doi: 10.1002/j.1460-2075.1994.tb06787.x. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  20. Kiehntopf M., Esquivel E. L., Brach M. A., Herrmann F. Ribozymes: biology, biochemistry, and implications for clinical medicine. J Mol Med (Berl) 1995 Feb;73(2):65–71. doi: 10.1007/BF00270579. [DOI] [PubMed] [Google Scholar]
  21. Kijima H., Ishida H., Ohkawa T., Kashani-Sabet M., Scanlon K. J. Therapeutic applications of ribozymes. Pharmacol Ther. 1995;68(2):247–267. doi: 10.1016/0163-7258(95)02008-x. [DOI] [PubMed] [Google Scholar]
  22. Koizumi M., Iwai S., Ohtsuka E. Cleavage of specific sites of RNA by designed ribozymes. FEBS Lett. 1988 Nov 7;239(2):285–288. doi: 10.1016/0014-5793(88)80935-9. [DOI] [PubMed] [Google Scholar]
  23. Konopka J. B., Watanabe S. M., Witte O. N. An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell. 1984 Jul;37(3):1035–1042. doi: 10.1016/0092-8674(84)90438-0. [DOI] [PubMed] [Google Scholar]
  24. Kronenwett R., Haas R., Sczakiel G. Kinetic selectivity of complementary nucleic acids: bcr-abl-directed antisense RNA and ribozymes. J Mol Biol. 1996 Jun 21;259(4):632–644. doi: 10.1006/jmbi.1996.0345. [DOI] [PubMed] [Google Scholar]
  25. Kuwabara T., Amontov S. V., Warashina M., Ohkawa J., Taira K. Characterization of several kinds of dimer minizyme: simultaneous cleavage at two sites in HIV-1 tat mRNA by dimer minizymes. Nucleic Acids Res. 1996 Jun 15;24(12):2302–2310. doi: 10.1093/nar/24.12.2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lange W., Cantin E. M., Finke J., Dölken G. In vitro and in vivo effects of synthetic ribozymes targeted against BCR/ABL mRNA. Leukemia. 1993 Nov;7(11):1786–1794. [PubMed] [Google Scholar]
  27. Lange W., Daskalakis M., Finke J., Dölken G. Comparison of different ribozymes for efficient and specific cleavage of BCR/ABL related mRNAs. FEBS Lett. 1994 Jan 31;338(2):175–178. doi: 10.1016/0014-5793(94)80359-5. [DOI] [PubMed] [Google Scholar]
  28. Leopold L. H., Shore S. K., Newkirk T. A., Reddy R. M., Reddy E. P. Multi-unit ribozyme-mediated cleavage of bcr-abl mRNA in myeloid leukemias. Blood. 1995 Apr 15;85(8):2162–2170. [PubMed] [Google Scholar]
  29. Leopold L. H., Shore S. K., Reddy E. P. Multi-unit anti-BCR-ABL ribozyme therapy in chronic myelogenous leukemia. Leuk Lymphoma. 1996 Aug;22(5-6):365–373. doi: 10.3109/10428199609054774. [DOI] [PubMed] [Google Scholar]
  30. Marschall P., Thomson J. B., Eckstein F. Inhibition of gene expression with ribozymes. Cell Mol Neurobiol. 1994 Oct;14(5):523–538. doi: 10.1007/BF02088835. [DOI] [PubMed] [Google Scholar]
  31. Morgan R. A., Anderson W. F. Human gene therapy. Annu Rev Biochem. 1993;62:191–217. doi: 10.1146/annurev.bi.62.070193.001203. [DOI] [PubMed] [Google Scholar]
  32. Mulligan R. C. The basic science of gene therapy. Science. 1993 May 14;260(5110):926–932. doi: 10.1126/science.8493530. [DOI] [PubMed] [Google Scholar]
  33. Ohkawa J., Yuyama N., Takebe Y., Nishikawa S., Taira K. Importance of independence in ribozyme reactions: kinetic behavior of trimmed and of simply connected multiple ribozymes with potential activity against human immunodeficiency virus. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11302–11306. doi: 10.1073/pnas.90.23.11302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pachuk C. J., Yoon K., Moelling K., Coney L. R. Selective cleavage of bcr-abl chimeric RNAs by a ribozyme targeted to non-contiguous sequences. Nucleic Acids Res. 1994 Feb 11;22(3):301–307. doi: 10.1093/nar/22.3.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Perriman R., Delves A., Gerlach W. L. Extended target-site specificity for a hammerhead ribozyme. Gene. 1992 Apr 15;113(2):157–163. doi: 10.1016/0378-1119(92)90391-2. [DOI] [PubMed] [Google Scholar]
  36. Piccirilli J. A., Vyle J. S., Caruthers M. H., Cech T. R. Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature. 1993 Jan 7;361(6407):85–88. doi: 10.1038/361085a0. [DOI] [PubMed] [Google Scholar]
  37. Pley H. W., Flaherty K. M., McKay D. B. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994 Nov 3;372(6501):68–74. doi: 10.1038/372068a0. [DOI] [PubMed] [Google Scholar]
  38. Pontius B. W., Lott W. B., von Hippel P. H. Observations on catalysis by hammerhead ribozymes are consistent with a two-divalent-metal-ion mechanism. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2290–2294. doi: 10.1073/pnas.94.6.2290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pyle A. M. Ribozymes: a distinct class of metalloenzymes. Science. 1993 Aug 6;261(5122):709–714. doi: 10.1126/science.7688142. [DOI] [PubMed] [Google Scholar]
  40. Rowley J. D. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973 Jun 1;243(5405):290–293. doi: 10.1038/243290a0. [DOI] [PubMed] [Google Scholar]
  41. Ruffner D. E., Stormo G. D., Uhlenbeck O. C. Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry. 1990 Nov 27;29(47):10695–10702. doi: 10.1021/bi00499a018. [DOI] [PubMed] [Google Scholar]
  42. Santoro S. W., Joyce G. F. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4262–4266. doi: 10.1073/pnas.94.9.4262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sarver N., Cantin E. M., Chang P. S., Zaia J. A., Ladne P. A., Stephens D. A., Rossi J. J. Ribozymes as potential anti-HIV-1 therapeutic agents. Science. 1990 Mar 9;247(4947):1222–1225. doi: 10.1126/science.2107573. [DOI] [PubMed] [Google Scholar]
  44. Scarabino D., Tocchini-Valentini G. P. Influence of substrate structure on cleavage by hammerhead ribozyme. FEBS Lett. 1996 Apr 1;383(3):185–190. doi: 10.1016/0014-5793(96)00242-6. [DOI] [PubMed] [Google Scholar]
  45. Scott W. G., Finch J. T., Klug A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell. 1995 Jun 30;81(7):991–1002. doi: 10.1016/s0092-8674(05)80004-2. [DOI] [PubMed] [Google Scholar]
  46. Scott W. G., Klug A. Ribozymes: structure and mechanism in RNA catalysis. Trends Biochem Sci. 1996 Jun;21(6):220–224. [PubMed] [Google Scholar]
  47. Scott W. G., Murray J. B., Arnold J. R., Stoddard B. L., Klug A. Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme. Science. 1996 Dec 20;274(5295):2065–2069. doi: 10.1126/science.274.5295.2065. [DOI] [PubMed] [Google Scholar]
  48. Shimayama T., Nishikawa S., Taira K. Generality of the NUX rule: kinetic analysis of the results of systematic mutations in the trinucleotide at the cleavage site of hammerhead ribozymes. Biochemistry. 1995 Mar 21;34(11):3649–3654. doi: 10.1021/bi00011a020. [DOI] [PubMed] [Google Scholar]
  49. Shore S. K., Nabissa P. M., Reddy E. P. Ribozyme-mediated cleavage of the BCRABL oncogene transcript: in vitro cleavage of RNA and in vivo loss of P210 protein-kinase activity. Oncogene. 1993 Nov;8(11):3183–3188. [PubMed] [Google Scholar]
  50. Shtivelman E., Lifshitz B., Gale R. P., Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985 Jun 13;315(6020):550–554. doi: 10.1038/315550a0. [DOI] [PubMed] [Google Scholar]
  51. Shtivelman E., Lifshitz B., Gale R. P., Roe B. A., Canaani E. Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene. Cell. 1986 Oct 24;47(2):277–284. doi: 10.1016/0092-8674(86)90450-2. [DOI] [PubMed] [Google Scholar]
  52. Snyder D. S., Wu Y., Wang J. L., Rossi J. J., Swiderski P., Kaplan B. E., Forman S. J. Ribozyme-mediated inhibition of bcr-abl gene expression in a Philadelphia chromosome-positive cell line. Blood. 1993 Jul 15;82(2):600–605. [PubMed] [Google Scholar]
  53. Steitz T. A., Steitz J. A. A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6498–6502. doi: 10.1073/pnas.90.14.6498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sugiyama H., Hatano K., Saito I., Amontov S., Taira K. Catalytic activities of hammerhead ribozymes with a triterpenoid linker instead of stem/loop II. FEBS Lett. 1996 Sep 2;392(3):215–219. doi: 10.1016/0014-5793(96)00814-9. [DOI] [PubMed] [Google Scholar]
  55. Sun L. Q., Pyati J., Smythe J., Wang L., Macpherson J., Gerlach W., Symonds G. Resistance to human immunodeficiency virus type 1 infection conferred by transduction of human peripheral blood lymphocytes with ribozyme, antisense, or polymeric trans-activation response element constructs. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7272–7276. doi: 10.1073/pnas.92.16.7272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Symons R. H. Self-cleavage of RNA in the replication of small pathogens of plants and animals. Trends Biochem Sci. 1989 Nov;14(11):445–450. doi: 10.1016/0968-0004(89)90103-5. [DOI] [PubMed] [Google Scholar]
  57. Taira K., Uebayasi M., Maeda H., Furukawa K. Energetics of RNA cleavage: implications for the mechanism of action of ribozymes. Protein Eng. 1990 Aug;3(8):691–701. doi: 10.1093/protein/3.8.691. [DOI] [PubMed] [Google Scholar]
  58. Thompson J. D., Ayers D. F., Malmstrom T. A., McKenzie T. L., Ganousis L., Chowrira B. M., Couture L., Stinchcomb D. T. Improved accumulation and activity of ribozymes expressed from a tRNA-based RNA polymerase III promoter. Nucleic Acids Res. 1995 Jun 25;23(12):2259–2268. doi: 10.1093/nar/23.12.2259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Thompson J. D., Macejak D., Couture L., Stinchcomb D. T. Ribozymes in gene therapy. Nat Med. 1995 Mar;1(3):277–278. doi: 10.1038/nm0395-277. [DOI] [PubMed] [Google Scholar]
  60. Tuschl T., Thomson J. B., Eckstein F. RNA cleavage by small catalytic RNAs. Curr Opin Struct Biol. 1995 Jun;5(3):296–302. doi: 10.1016/0959-440x(95)80090-5. [DOI] [PubMed] [Google Scholar]
  61. Uchimaru T., Uebayasi M., Tanabe K., Taira K. Theoretical analyses on the role of Mg2+ ions in ribozyme reactions. FASEB J. 1993 Jan;7(1):137–142. doi: 10.1096/fasebj.7.1.8422960. [DOI] [PubMed] [Google Scholar]
  62. Uhlenbeck O. C. A small catalytic oligoribonucleotide. Nature. 1987 Aug 13;328(6131):596–600. doi: 10.1038/328596a0. [DOI] [PubMed] [Google Scholar]
  63. Wright L., Wilson S. B., Milliken S., Biggs J., Kearney P. Ribozyme-mediated cleavage of the bcr/abl transcript expressed in chronic myeloid leukemia. Exp Hematol. 1993 Dec;21(13):1714–1718. [PubMed] [Google Scholar]
  64. Yarus M. How many catalytic RNAs? Ions and the Cheshire cat conjecture. FASEB J. 1993 Jan;7(1):31–39. doi: 10.1096/fasebj.7.1.8422972. [DOI] [PubMed] [Google Scholar]
  65. Zoumadakis M., Tabler M. Comparative analysis of cleavage rates after systematic permutation of the NUX consensus target motif for hammerhead ribozymes. Nucleic Acids Res. 1995 Apr 11;23(7):1192–1196. doi: 10.1093/nar/23.7.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES