Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Aug 1;25(15):3001–3008. doi: 10.1093/nar/25.15.3001

Mechanism of DNA transesterification by vaccinia topoisomerase: catalytic contributions of essential residues Arg-130, Gly-132, Tyr-136 and Lys-167.

J Wittschieben 1, S Shuman 1
PMCID: PMC146853  PMID: 9224599

Abstract

Vaccinia topoisomerase, a eukaryotic type IB enzyme, catalyzes relaxation of supercoiled DNA by cleaving and rejoining DNA strands through a DNA- (3'-phosphotyrosyl)-enzyme intermediate. We have performed a kinetic analysis of mutational effects at four essential amino acids: Arg-130, Gly-132, Tyr-136 and Lys-167. Arg-130, Gly-132 and Lys-167 are conserved in all members of the type IB topoisomerase family. Tyr-136 is conserved in all poxvirus topoisomerases. We show that Arg-130 and Lys-167 are required for transesterification chemistry. Arg-130 enhances the rates of both cleavage and religation by 10(5). Lys-167 enhances the cleavage and religation reactions by 10(3) and 10(4), respectively. An instructive distinction between these two essential residues is that Arg-130 cannot be replaced by lysine, whereas substituting Lys-167 by arginine resulted in partial restoration of function relative to the alanine mutant. We propose that both basic residues interact directly with the scissile phosphate at the topoisomerase active site. Mutations at positions Gly-132 and Tyr-136 reduced the rate of strand cleavage by more than two orders of magnitude, but elicited only mild effects on religation rate. Gly-132 and Tyr-136 are suggested to facilitate a pre-cleavage activation step. The results of comprehensive mutagenesis of the vaccinia topoisomerase illuminate mechanistic and structural similarities to site-specific recombinases.

Full Text

The Full Text of this article is available as a PDF (195.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng C., Wang L. K., Sekiguchi J., Shuman S. Mutational analysis of 39 residues of vaccinia DNA topoisomerase identifies Lys-220, Arg-223, and Asn-228 as important for covalent catalysis. J Biol Chem. 1997 Mar 28;272(13):8263–8269. doi: 10.1074/jbc.272.13.8263. [DOI] [PubMed] [Google Scholar]
  2. Gupta M., Fujimori A., Pommier Y. Eukaryotic DNA topoisomerases I. Biochim Biophys Acta. 1995 May 17;1262(1):1–14. doi: 10.1016/0167-4781(95)00029-g. [DOI] [PubMed] [Google Scholar]
  3. Hickman A. B., Waninger S., Scocca J. J., Dyda F. Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 A resolution. Cell. 1997 Apr 18;89(2):227–237. doi: 10.1016/s0092-8674(00)80202-0. [DOI] [PubMed] [Google Scholar]
  4. Jensen A. D., Svejstrup J. Q. Purification and characterization of human topoisomerase I mutants. Eur J Biochem. 1996 Mar 1;236(2):389–394. doi: 10.1111/j.1432-1033.1996.00389.x. [DOI] [PubMed] [Google Scholar]
  5. Kwon H. J., Tirumalai R., Landy A., Ellenberger T. Flexibility in DNA recombination: structure of the lambda integrase catalytic core. Science. 1997 Apr 4;276(5309):126–131. doi: 10.1126/science.276.5309.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Levin N. A., Bjornsti M. A., Fink G. R. A novel mutation in DNA topoisomerase I of yeast causes DNA damage and RAD9-dependent cell cycle arrest. Genetics. 1993 Apr;133(4):799–814. doi: 10.1093/genetics/133.4.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Morham S. G., Shuman S. Covalent and noncovalent DNA binding by mutants of vaccinia DNA topoisomerase I. J Biol Chem. 1992 Aug 5;267(22):15984–15992. [PubMed] [Google Scholar]
  8. Morham S. G., Shuman S. Phenotypic selection and characterization of mutant alleles of a eukaryotic DNA topoisomerase I. Genes Dev. 1990 Apr;4(4):515–524. doi: 10.1101/gad.4.4.515. [DOI] [PubMed] [Google Scholar]
  9. Petersen B. O., Shuman S. Histidine 265 is important for covalent catalysis by vaccinia topoisomerase and is conserved in all eukaryotic type I enzymes. J Biol Chem. 1997 Feb 14;272(7):3891–3896. doi: 10.1074/jbc.272.7.3891. [DOI] [PubMed] [Google Scholar]
  10. Petersen B. O., Wittschieben J., Shuman S. Mutations within a conserved region of vaccinia topoisomerase affect the DNA cleavage-religation equilibrium. J Mol Biol. 1996 Oct 25;263(2):181–195. doi: 10.1006/jmbi.1996.0568. [DOI] [PubMed] [Google Scholar]
  11. Sekiguchi J., Seeman N. C., Shuman S. Resolution of Holliday junctions by eukaryotic DNA topoisomerase I. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):785–789. doi: 10.1073/pnas.93.2.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sekiguchi J., Shuman S. Proteolytic footprinting of vaccinia topoisomerase bound to DNA. J Biol Chem. 1995 May 12;270(19):11636–11645. doi: 10.1074/jbc.270.19.11636. [DOI] [PubMed] [Google Scholar]
  13. Sekiguchi J., Shuman S. Requirements for noncovalent binding of vaccinia topoisomerase I to duplex DNA. Nucleic Acids Res. 1994 Dec 11;22(24):5360–5365. doi: 10.1093/nar/22.24.5360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sharma A., Hanai R., Mondragón A. Crystal structure of the amino-terminal fragment of vaccinia virus DNA topoisomerase I at 1.6 A resolution. Structure. 1994 Aug 15;2(8):767–777. doi: 10.1016/s0969-2126(94)00077-8. [DOI] [PubMed] [Google Scholar]
  15. Shuman S., Kane E. M., Morham S. G. Mapping the active-site tyrosine of vaccinia virus DNA topoisomerase I. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9793–9797. doi: 10.1073/pnas.86.24.9793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shuman S., Moss B. Identification of a vaccinia virus gene encoding a type I DNA topoisomerase. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7478–7482. doi: 10.1073/pnas.84.21.7478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shuman S. Recombination mediated by vaccinia virus DNA topoisomerase I in Escherichia coli is sequence specific. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10104–10108. doi: 10.1073/pnas.88.22.10104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shuman S. Vaccinia DNA topoisomerase I promotes illegitimate recombination in Escherichia coli. Proc Natl Acad Sci U S A. 1989 May;86(10):3489–3493. doi: 10.1073/pnas.86.10.3489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stivers J. T., Shuman S., Mildvan A. S. Vaccinia DNA topoisomerase I: kinetic evidence for general acid-base catalysis and a conformational step. Biochemistry. 1994 Dec 27;33(51):15449–15458. doi: 10.1021/bi00255a027. [DOI] [PubMed] [Google Scholar]
  20. Stivers J. T., Shuman S., Mildvan A. S. Vaccinia DNA topoisomerase I: single-turnover and steady-state kinetic analysis of the DNA strand cleavage and ligation reactions. Biochemistry. 1994 Jan 11;33(1):327–339. doi: 10.1021/bi00167a043. [DOI] [PubMed] [Google Scholar]
  21. Wang J. C. DNA topoisomerases. Annu Rev Biochem. 1996;65:635–692. doi: 10.1146/annurev.bi.65.070196.003223. [DOI] [PubMed] [Google Scholar]
  22. Wang L. K., Shuman S. Deletions at the carboxyl terminus of vaccinia DNA topoisomerase affect DNA binding and enhance distributivity in DNA relaxation. Biochemistry. 1997 Apr 1;36(13):3909–3916. doi: 10.1021/bi962754p. [DOI] [PubMed] [Google Scholar]
  23. Wittschieben J., Shuman S. Mutational analysis of vaccinia DNA topoisomerase defines amino acid residues essential for covalent catalysis. J Biol Chem. 1994 Nov 25;269(47):29978–29983. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES