Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Aug 1;25(15):3017–3026. doi: 10.1093/nar/25.15.3017

Mechanisms of developmental regulation in Trypanosoma brucei: a polypyrimidine tract in the 3'-untranslated region of a surface protein mRNA affects RNA abundance and translation.

H R Hotz 1, C Hartmann 1, K Huober 1, M Hug 1, C Clayton 1
PMCID: PMC146859  PMID: 9224601

Abstract

Salivarian trypanosomes are extracellular parasites of mammals that are transmitted by tsetse flies. The procyclic acidic repetitive proteins (PARPs) are the major surface glycoproteins of the form of Trypanosoma brucei that replicates in the fly. The abundance of PARP mRNA and protein is very strongly regulated, mostly at the post-transcriptional level. The 3'-untranslated regions of two PARP genes are of similar lengths, but are dissimilar in sequence apart from a 16mer stem-loop that stimulates translation and a 26mer polypyrimidine tract. Addition of either of these PARP 3'-untranslated regions immediately downstream of a reporter gene resulted in developmental regulation mimicking that of PARP. We show that the PARP 3'-UTR reduces RNA stability and translation in bloodstream forms and that the 26mer polypyrimidine tract is necessary for both effects.

Full Text

The Full Text of this article is available as a PDF (299.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben Amar M. F., Pays A., Tebabi P., Dero B., Seebeck T., Steinert M., Pays E. Structure and transcription of the actin gene of Trypanosoma brucei. Mol Cell Biol. 1988 May;8(5):2166–2176. doi: 10.1128/mcb.8.5.2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berberof M., Vanhamme L., Tebabi P., Pays A., Jefferies D., Welburn S., Pays E. The 3'-terminal region of the mRNAs for VSG and procyclin can confer stage specificity to gene expression in Trypanosoma brucei. EMBO J. 1995 Jun 15;14(12):2925–2934. doi: 10.1002/j.1460-2075.1995.tb07292.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biebinger S., Rettenmaier S., Flaspohler J., Hartmann C., Peña-Diaz J., Wirtz L. E., Hotz H. R., Barry J. D., Clayton C. The PARP promoter of Trypanosoma brucei is developmentally regulated in a chromosomal context. Nucleic Acids Res. 1996 Apr 1;24(7):1202–1211. doi: 10.1093/nar/24.7.1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blattner J., Clayton C. E. The 3'-untranslated regions from the Trypanosoma brucei phosphoglycerate kinase-encoding genes mediate developmental regulation. Gene. 1995 Aug 30;162(1):153–156. doi: 10.1016/0378-1119(95)00366-e. [DOI] [PubMed] [Google Scholar]
  5. Caponigro G., Parker R. Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol Rev. 1996 Mar;60(1):233–249. doi: 10.1128/mr.60.1.233-249.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang D. D., Sharp P. A. Regulation by HIV Rev depends upon recognition of splice sites. Cell. 1989 Dec 1;59(5):789–795. doi: 10.1016/0092-8674(89)90602-8. [DOI] [PubMed] [Google Scholar]
  7. Charest H., Zhang W. W., Matlashewski G. The developmental expression of Leishmania donovani A2 amastigote-specific genes is post-transcriptionally mediated and involves elements located in the 3'-untranslated region. J Biol Chem. 1996 Jul 19;271(29):17081–17090. doi: 10.1074/jbc.271.29.17081. [DOI] [PubMed] [Google Scholar]
  8. Chen C. Y., Shyu A. B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci. 1995 Nov;20(11):465–470. doi: 10.1016/s0968-0004(00)89102-1. [DOI] [PubMed] [Google Scholar]
  9. Chung H. M., Lee M. G., Dietrich P., Huang J., Van der Ploeg L. H. Disruption of largest subunit RNA polymerase II genes in Trypanosoma brucei. Mol Cell Biol. 1993 Jun;13(6):3734–3743. doi: 10.1128/mcb.13.6.3734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chung H. M., Lee M. G., Van der Ploeg L. H. RNA polymerase I-mediated protein-coding gene expression in Trypanosoma brucei. Parasitol Today. 1992 Dec;8(12):414–418. doi: 10.1016/0169-4758(92)90194-7. [DOI] [PubMed] [Google Scholar]
  11. Cross G. A. Cellular and genetic aspects of antigenic variation in trypanosomes. Annu Rev Immunol. 1990;8:83–110. doi: 10.1146/annurev.iy.08.040190.000503. [DOI] [PubMed] [Google Scholar]
  12. Curotto de Lafaille M. A., Laban A., Wirth D. F. Gene expression in Leishmania: analysis of essential 5' DNA sequences. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2703–2707. doi: 10.1073/pnas.89.7.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ehlers B., Czichos J., Overath P. RNA turnover in Trypanosoma brucei. Mol Cell Biol. 1987 Mar;7(3):1242–1249. doi: 10.1128/mcb.7.3.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Graham S. V. Mechanisms of stage-regulated gene expression in kinetoplastida. Parasitol Today. 1995 Jun;11(6):217–223. doi: 10.1016/0169-4758(95)80081-6. [DOI] [PubMed] [Google Scholar]
  15. Hehl A., Vassella E., Braun R., Roditi I. A conserved stem-loop structure in the 3' untranslated region of procyclin mRNAs regulates expression in Trypanosoma brucei. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):370–374. doi: 10.1073/pnas.91.1.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hotz H. R., Lorenz P., Fischer R., Krieger S., Clayton C. Role of 3'-untranslated regions in the regulation of hexose transporter mRNAs in Trypanosoma brucei. Mol Biochem Parasitol. 1995 Dec;75(1):1–14. doi: 10.1016/0166-6851(95)02503-0. [DOI] [PubMed] [Google Scholar]
  17. Huang J., Van der Ploeg L. H. Requirement of a polypyrimidine tract for trans-splicing in trypanosomes: discriminating the PARP promoter from the immediately adjacent 3' splice acceptor site. EMBO J. 1991 Dec;10(12):3877–3885. doi: 10.1002/j.1460-2075.1991.tb04957.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hug M., Carruthers V. B., Hartmann C., Sherman D. S., Cross G. A., Clayton C. A possible role for the 3'-untranslated region in developmental regulation in Trypanosoma brucei. Mol Biochem Parasitol. 1993 Sep;61(1):87–95. doi: 10.1016/0166-6851(93)90161-p. [DOI] [PubMed] [Google Scholar]
  19. Hug M., Hotz H. R., Hartmann C., Clayton C. Hierarchies of RNA-processing signals in a trypanosome surface antigen mRNA precursor. Mol Cell Biol. 1994 Nov;14(11):7428–7435. doi: 10.1128/mcb.14.11.7428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Häusler T., Clayton C. Post-transcriptional control of hsp70 mRNA in Trypanosoma brucei. Mol Biochem Parasitol. 1996 Feb-Mar;76(1-2):57–71. doi: 10.1016/0166-6851(95)02538-3. [DOI] [PubMed] [Google Scholar]
  21. Jaeger J. A., Turner D. H., Zuker M. Improved predictions of secondary structures for RNA. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7706–7710. doi: 10.1073/pnas.86.20.7706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Janz L., Clayton C. The PARP and rRNA promoters of Trypanosoma brucei are composed of dissimilar sequence elements that are functionally interchangeable. Mol Cell Biol. 1994 Sep;14(9):5804–5811. doi: 10.1128/mcb.14.9.5804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Koenig-Martin E., Yamage M., Roditi I. A procyclin-associated gene in Trypanosoma brucei encodes a polypeptide related to ESAG 6 and 7 proteins. Mol Biochem Parasitol. 1992 Oct;55(1-2):135–145. doi: 10.1016/0166-6851(92)90134-6. [DOI] [PubMed] [Google Scholar]
  24. Laird P. W., Zomerdijk J. C., de Korte D., Borst P. In vivo labelling of intermediates in the discontinuous synthesis of mRNAs in Trypanosoma brucei. EMBO J. 1987 Apr;6(4):1055–1062. doi: 10.1002/j.1460-2075.1987.tb04858.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Laird P. W., ten Asbroek A. L., Borst P. Controlled turnover and 3' trimming of the trans splicing precursor of Trypanosoma brucei. Nucleic Acids Res. 1987 Dec 23;15(24):10087–10103. doi: 10.1093/nar/15.24.10087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. LeBowitz J. H., Smith H. Q., Rusche L., Beverley S. M. Coupling of poly(A) site selection and trans-splicing in Leishmania. Genes Dev. 1993 Jun;7(6):996–1007. doi: 10.1101/gad.7.6.996. [DOI] [PubMed] [Google Scholar]
  27. Legrain P., Rosbash M. Some cis- and trans-acting mutants for splicing target pre-mRNA to the cytoplasm. Cell. 1989 May 19;57(4):573–583. doi: 10.1016/0092-8674(89)90127-x. [DOI] [PubMed] [Google Scholar]
  28. Matthews K. R., Tschudi C., Ullu E. A common pyrimidine-rich motif governs trans-splicing and polyadenylation of tubulin polycistronic pre-mRNA in trypanosomes. Genes Dev. 1994 Feb 15;8(4):491–501. doi: 10.1101/gad.8.4.491. [DOI] [PubMed] [Google Scholar]
  29. McNally K. P., Agabian N. Trypanosoma brucei spliced-leader RNA methylations are required for trans splicing in vivo. Mol Cell Biol. 1992 Nov;12(11):4844–4851. doi: 10.1128/mcb.12.11.4844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mowatt M. R., Clayton C. E. Polymorphism in the procyclic acidic repetitive protein gene family of Trypanosoma brucei. Mol Cell Biol. 1988 Oct;8(10):4055–4062. doi: 10.1128/mcb.8.10.4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nozaki T., Cross G. A. Effects of 3' untranslated and intergenic regions on gene expression in Trypanosoma cruzi. Mol Biochem Parasitol. 1995 Dec;75(1):55–67. doi: 10.1016/0166-6851(95)02512-x. [DOI] [PubMed] [Google Scholar]
  32. Pays E., Vanhamme L., Berberof M. Genetic controls for the expression of surface antigens in African trypanosomes. Annu Rev Microbiol. 1994;48:25–52. doi: 10.1146/annurev.mi.48.100194.000325. [DOI] [PubMed] [Google Scholar]
  33. Ramamoorthy R., Swihart K. G., McCoy J. J., Wilson M. E., Donelson J. E. Intergenic regions between tandem gp63 genes influence the differential expression of gp63 RNAs in Leishmania chagasi promastigotes. J Biol Chem. 1995 May 19;270(20):12133–12139. doi: 10.1074/jbc.270.20.12133. [DOI] [PubMed] [Google Scholar]
  34. Roditi I., Schwarz H., Pearson T. W., Beecroft R. P., Liu M. K., Richardson J. P., Bühring H. J., Pleiss J., Bülow R., Williams R. O. Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei. J Cell Biol. 1989 Feb;108(2):737–746. doi: 10.1083/jcb.108.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rudenko G., Blundell P. A., Taylor M. C., Kieft R., Borst P. VSG gene expression site control in insect form Trypanosoma brucei. EMBO J. 1994 Nov 15;13(22):5470–5482. doi: 10.1002/j.1460-2075.1994.tb06882.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rudenko G., Lee M. G., Van der Ploeg L. H. The PARP and VSG genes of Trypanosoma brucei do not resemble RNA polymerase II transcription units in sensitivity to Sarkosyl in nuclear run-on assays. Nucleic Acids Res. 1992 Jan 25;20(2):303–306. doi: 10.1093/nar/20.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schürch N., Hehl A., Vassella E., Braun R., Roditi I. Accurate polyadenylation of procyclin mRNAs in Trypanosoma brucei is determined by pyrimidine-rich elements in the intergenic regions. Mol Cell Biol. 1994 Jun;14(6):3668–3675. doi: 10.1128/mcb.14.6.3668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ullu E., Matthews K. R., Tschudi C. Temporal order of RNA-processing reactions in trypanosomes: rapid trans splicing precedes polyadenylation of newly synthesized tubulin transcripts. Mol Cell Biol. 1993 Jan;13(1):720–725. doi: 10.1128/mcb.13.1.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vanhamme L., Berberof M., Le Ray D., Pays E. Stimuli of differentiation regulate RNA elongation in the transcription units for the major stage-specific antigens of Trypanosoma brucei. Nucleic Acids Res. 1995 Jun 11;23(11):1862–1869. doi: 10.1093/nar/23.11.1862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vanhamme L., Pays E. Control of gene expression in trypanosomes. Microbiol Rev. 1995 Jun;59(2):223–240. doi: 10.1128/mr.59.2.223-240.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wirtz E., Hartmann C., Clayton C. Gene expression mediated by bacteriophage T3 and T7 RNA polymerases in transgenic trypanosomes. Nucleic Acids Res. 1994 Sep 25;22(19):3887–3894. doi: 10.1093/nar/22.19.3887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zomerdijk J. C., Ouellette M., ten Asbroek A. L., Kieft R., Bommer A. M., Clayton C. E., Borst P. The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei. EMBO J. 1990 Sep;9(9):2791–2801. doi: 10.1002/j.1460-2075.1990.tb07467.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zubiaga A. M., Belasco J. G., Greenberg M. E. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol. 1995 Apr;15(4):2219–2230. doi: 10.1128/mcb.15.4.2219. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES