Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Aug 1;25(15):3009–3016. doi: 10.1093/nar/25.15.3009

A cruciform-dumbbell model for inverted dimer formation mediated by inverted repeats.

C T Lin 1, Y L Lyu 1, L F Liu 1
PMCID: PMC146860  PMID: 9224600

Abstract

Small inverted repeats (small palindromes) on plasmids have been shown to mediate a recombinational rearrangement event in Escherichia coli leading to the formation of inverted dimers (giant palindromes). This recombinational rearrangement event is efficient and independent of RecA and RecBCD. In this report, we propose a cruciform-dumbbell model to explain the inverted dimer formation mediated by inverted repeats. In this model, the inverted repeats promote the formation of a DNA cruciform which is processed by an endonuclease into a linear DNA with two hairpin loops at its ends. Upon DNA replication, this linear dumbbell-like DNA is then converted to the inverted dimer. In support of this model, linear dumbbell DNA molecules with unidirectional origin of DNA replication (ColE1 ori ) have been constructed and shown to transform E.coli efficiently resulting in the formation of the inverted dimer. The ability of linear dumbbell DNA to transform E.coli suggests that the terminal loops may be important in bypassing the requirement of DNA supercoiling for initiation of replication of the ColE1 ori.

Full Text

The Full Text of this article is available as a PDF (237.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. E., Shekhtman E. M., Zechiedrich E. L., Schmid M. B., Cozzarelli N. R. The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell. 1992 Oct 16;71(2):277–288. doi: 10.1016/0092-8674(92)90356-h. [DOI] [PubMed] [Google Scholar]
  2. Bi X., Liu L. F. A replicational model for DNA recombination between direct repeats. J Mol Biol. 1996 Mar 15;256(5):849–858. doi: 10.1006/jmbi.1996.0131. [DOI] [PubMed] [Google Scholar]
  3. Bi X., Liu L. F. DNA rearrangement mediated by inverted repeats. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):819–823. doi: 10.1073/pnas.93.2.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bi X., Liu L. F. recA-independent and recA-dependent intramolecular plasmid recombination. Differential homology requirement and distance effect. J Mol Biol. 1994 Jan 14;235(2):414–423. doi: 10.1006/jmbi.1994.1002. [DOI] [PubMed] [Google Scholar]
  5. Bi X., Lyu Y. L., Liu L. F. Specific stimulation of recA-independent plasmid recombination by a DNA sequence at a distance. J Mol Biol. 1995 Apr 14;247(5):890–902. doi: 10.1006/jmbi.1995.0188. [DOI] [PubMed] [Google Scholar]
  6. Bowater R. P., Chen D., Lilley D. M. Elevated unconstrained supercoiling of plasmid DNA generated by transcription and translation of the tetracycline resistance gene in eubacteria. Biochemistry. 1994 Aug 9;33(31):9266–9275. doi: 10.1021/bi00197a030. [DOI] [PubMed] [Google Scholar]
  7. Butler D. K., Yasuda L. E., Yao M. C. An intramolecular recombination mechanism for the formation of the rRNA gene palindrome of Tetrahymena thermophila. Mol Cell Biol. 1995 Dec;15(12):7117–7126. doi: 10.1128/mcb.15.12.7117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Butler D. K., Yasuda L. E., Yao M. C. Induction of large DNA palindrome formation in yeast: implications for gene amplification and genome stability in eukaryotes. Cell. 1996 Dec 13;87(6):1115–1122. doi: 10.1016/s0092-8674(00)81805-x. [DOI] [PubMed] [Google Scholar]
  9. Chédin F., Dervyn E., Dervyn R., Ehrlich S. D., Noirot P. Frequency of deletion formation decreases exponentially with distance between short direct repeats. Mol Microbiol. 1994 May;12(4):561–569. doi: 10.1111/j.1365-2958.1994.tb01042.x. [DOI] [PubMed] [Google Scholar]
  10. Dianov G. L., Kuzminov A. V., Mazin A. V., Salganik R. I. Molecular mechanisms of deletion formation in Escherichia coli plasmids. I. Deletion formation mediated by long direct repeats. Mol Gen Genet. 1991 Aug;228(1-2):153–159. doi: 10.1007/BF00282460. [DOI] [PubMed] [Google Scholar]
  11. Fried M., Feo S., Heard E. The role of inverted duplication in the generation of gene amplification in mammalian cells. Biochim Biophys Acta. 1991 Oct 8;1090(2):143–155. doi: 10.1016/0167-4781(91)90095-4. [DOI] [PubMed] [Google Scholar]
  12. Grondin K., Roy G., Ouellette M. Formation of extrachromosomal circular amplicons with direct or inverted duplications in drug-resistant Leishmania tarentolae. Mol Cell Biol. 1996 Jul;16(7):3587–3595. doi: 10.1128/mcb.16.7.3587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hahn P. J. Molecular biology of double-minute chromosomes. Bioessays. 1993 Jul;15(7):477–484. doi: 10.1002/bies.950150707. [DOI] [PubMed] [Google Scholar]
  14. Harrington C., Perrino F. W. Initiation of RNA-primed DNA synthesis in vitro by DNA polymerase alpha-primase. Nucleic Acids Res. 1995 Mar 25;23(6):1003–1009. doi: 10.1093/nar/23.6.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hiasa H., Marians K. J. Topoisomerase IV can support oriC DNA replication in vitro. J Biol Chem. 1994 Jun 10;269(23):16371–16375. [PubMed] [Google Scholar]
  16. Huang T., Campbell J. L. Amplification of a circular episome carrying an inverted repeat of the DFR1 locus and adjacent autonomously replicating sequence element of Saccharomyces cerevisiae. J Biol Chem. 1995 Apr 21;270(16):9607–9614. doi: 10.1074/jbc.270.16.9607. [DOI] [PubMed] [Google Scholar]
  17. Hyrien O., Debatisse M., Buttin G., de Saint Vincent B. R. The multicopy appearance of a large inverted duplication and the sequence at the inversion joint suggest a new model for gene amplification. EMBO J. 1988 Feb;7(2):407–417. doi: 10.1002/j.1460-2075.1988.tb02828.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kowalczykowski S. C., Dixon D. A., Eggleston A. K., Lauder S. D., Rehrauer W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev. 1994 Sep;58(3):401–465. doi: 10.1128/mr.58.3.401-465.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Langer U., Alonso J. C. Genetic analysis of the DnaA-dependent priming in the initiation of lagging strand DNA synthesis of plasmid pUB110 in Bacillus subtilis. FEMS Microbiol Lett. 1994 Jun 1;119(1-2):123–128. doi: 10.1111/j.1574-6968.1994.tb06878.x. [DOI] [PubMed] [Google Scholar]
  20. Lilley D. M., Gough G. W., Hallam L. R., Sullivan K. M. The physical chemistry of cruciform structures in supercoiled DNA molecules. Biochimie. 1985 Jul-Aug;67(7-8):697–706. doi: 10.1016/s0300-9084(85)80157-7. [DOI] [PubMed] [Google Scholar]
  21. Lovett M. A., Katz L., Helinski D. R. Unidirectional replication of plasmid ColE1 DNA. Nature. 1974 Sep 27;251(5473):337–340. doi: 10.1038/251337a0. [DOI] [PubMed] [Google Scholar]
  22. Lovett S. T., Drapkin P. T., Sutera V. A., Jr, Gluckman-Peskind T. J. A sister-strand exchange mechanism for recA-independent deletion of repeated DNA sequences in Escherichia coli. Genetics. 1993 Nov;135(3):631–642. doi: 10.1093/genetics/135.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lovett S. T., Gluckman T. J., Simon P. J., Sutera V. A., Jr, Drapkin P. T. Recombination between repeats in Escherichia coli by a recA-independent, proximity-sensitive mechanism. Mol Gen Genet. 1994 Nov 1;245(3):294–300. doi: 10.1007/BF00290109. [DOI] [PubMed] [Google Scholar]
  24. Marians K. J., Minden J. S., Parada C. Replication of superhelical DNAs in vitro. Prog Nucleic Acid Res Mol Biol. 1986;33:111–140. doi: 10.1016/s0079-6603(08)60021-5. [DOI] [PubMed] [Google Scholar]
  25. Marians K. J. Prokaryotic DNA replication. Annu Rev Biochem. 1992;61:673–719. doi: 10.1146/annurev.bi.61.070192.003325. [DOI] [PubMed] [Google Scholar]
  26. Martín-Parras L., Hernández P., Martínez-Robles M. L., Schvartzman J. B. Unidirectional replication as visualized by two-dimensional agarose gel electrophoresis. J Mol Biol. 1991 Aug 20;220(4):843–853. doi: 10.1016/0022-2836(91)90357-c. [DOI] [PubMed] [Google Scholar]
  27. Matfield M., Badawi R., Brammar W. J. Rec-dependent and Rec-independent recombination of plasmid-borne duplications in Escherichia coli K12. Mol Gen Genet. 1985;199(3):518–523. doi: 10.1007/BF00330768. [DOI] [PubMed] [Google Scholar]
  28. Mazin A. V., Kuzminov A. V., Dianov G. L., Salganik R. I. Mechanisms of deletion formation in Escherichia coli plasmids. II. Deletions mediated by short direct repeats. Mol Gen Genet. 1991 Aug;228(1-2):209–214. doi: 10.1007/BF00282467. [DOI] [PubMed] [Google Scholar]
  29. Miao D. M., Honda Y., Tanaka K., Higashi A., Nakamura T., Taguchi Y., Sakai H., Komano T., Bagdasarian M. A base-paired hairpin structure essential for the functional priming signal for DNA replication of the broad host range plasmid RSF1010. Nucleic Acids Res. 1993 Oct 25;21(21):4900–4903. doi: 10.1093/nar/21.21.4900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Minden J. S., Marians K. J. Escherichia coli topoisomerase I can segregate replicating pBR322 daughter DNA molecules in vitro. J Biol Chem. 1986 Sep 5;261(25):11906–11917. [PubMed] [Google Scholar]
  31. Minden J. S., Marians K. J. Replication of pBR322 DNA in vitro with purified proteins. Requirement for topoisomerase I in the maintenance of template specificity. J Biol Chem. 1985 Aug 5;260(16):9316–9325. [PubMed] [Google Scholar]
  32. Ogasawara N., Seiki M., Yoshikawa H. Effect of novobiocin on initiation of DNA replication in Bacillus subtilis. Nature. 1979 Oct 25;281(5733):702–704. doi: 10.1038/281702a0. [DOI] [PubMed] [Google Scholar]
  33. Ouellette M., Borst P. Drug resistance and P-glycoprotein gene amplification in the protozoan parasite Leishmania. Res Microbiol. 1991 Jul-Aug;142(6):737–746. doi: 10.1016/0923-2508(91)90089-s. [DOI] [PubMed] [Google Scholar]
  34. Ouellette M., Hettema E., Wüst D., Fase-Fowler F., Borst P. Direct and inverted DNA repeats associated with P-glycoprotein gene amplification in drug resistant Leishmania. EMBO J. 1991 Apr;10(4):1009–1016. doi: 10.1002/j.1460-2075.1991.tb08035.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Passananti C., Davies B., Ford M., Fried M. Structure of an inverted duplication formed as a first step in a gene amplification event: implications for a model of gene amplification. EMBO J. 1987 Jun;6(6):1697–1703. doi: 10.1002/j.1460-2075.1987.tb02420.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Peng H., Marians K. J. Decatenation activity of topoisomerase IV during oriC and pBR322 DNA replication in vitro. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8571–8575. doi: 10.1073/pnas.90.18.8571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Peng H., Marians K. J. The interaction of Escherichia coli topoisomerase IV with DNA. J Biol Chem. 1995 Oct 20;270(42):25286–25290. doi: 10.1074/jbc.270.42.25286. [DOI] [PubMed] [Google Scholar]
  38. Rao B. J., Chiu S. K., Bazemore L. R., Reddy G., Radding C. M. How specific is the first recognition step of homologous recombination? Trends Biochem Sci. 1995 Mar;20(3):109–113. doi: 10.1016/s0968-0004(00)88976-8. [DOI] [PubMed] [Google Scholar]
  39. Ruiz J. C., Wahl G. M. Chromosomal destabilization during gene amplification. Mol Cell Biol. 1990 Jun;10(6):3056–3066. doi: 10.1128/mcb.10.6.3056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ruiz J. C., Wahl G. M. Formation of an inverted duplication can be an initial step in gene amplification. Mol Cell Biol. 1988 Oct;8(10):4302–4313. doi: 10.1128/mcb.8.10.4302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smith G. R. Homologous recombination in procaryotes. Microbiol Rev. 1988 Mar;52(1):1–28. doi: 10.1128/mr.52.1.1-28.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. White T. C., Fase-Fowler F., van Luenen H., Calafat J., Borst P. The H circles of Leishmania tarentolae are a unique amplifiable system of oligomeric DNAs associated with drug resistance. J Biol Chem. 1988 Nov 15;263(32):16977–16983. [PubMed] [Google Scholar]
  43. Wood D. C., Lebowitz J. Effect of supercoiling on the abortive initiation kinetics of the RNA-I promoter of ColE1 plasmid DNA. J Biol Chem. 1984 Sep 25;259(18):11184–11187. [PubMed] [Google Scholar]
  44. Yasuda L. F., Yao M. C. Short inverted repeats at a free end signal large palindromic DNA formation in Tetrahymena. Cell. 1991 Nov 1;67(3):505–516. doi: 10.1016/0092-8674(91)90525-4. [DOI] [PubMed] [Google Scholar]
  45. Zechiedrich E. L., Cozzarelli N. R. Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli. Genes Dev. 1995 Nov 15;9(22):2859–2869. doi: 10.1101/gad.9.22.2859. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES