Abstract
The extracellular matrix (ECM) has been shown to play an important role in development and tissue-specific gene expression, yet the mechanism by which genes receive signals from the ECM is poorly understood. The aboral ectoderm-specific LpS1-alpha and -beta genes of Lytechinus pictus , members of the Spec gene family, provide an excellent model system to study ECM- mediated gene regulation. Disruption of the ECM by preventing collagen deposition using the lathrytic agent beta-aminopropionitrile (BAPN) inhibits LpS1 gene transcription. LpS1 transcription resumes after removal of BAPN and subsequent collagen reformation. Using a chloramphenicol acetyltransferase (CAT) reporter gene assay, we show that a 125 bp region of the LpS1-beta promoter from -108 to +17 contains an ECM response element (ECM RE). Insertion of the 125 bp region into the promoter of the metallothionein gene of L. pictus, a gene unaffected by ECM disruption, caused the fused promoter to become ECM dependent. As with the endogenous LpS1 genes, CAT activity directed by the fused LpS1-beta promoter resumed in embryos recovered from ECM disruption. A mutation in a cis -acting element called the proximal G-string, which lies in the 125 bp region, caused CAT activity levels in ECM-disrupted embryos to equal that of the wild-type LpS1-bet apromoter in ECM-intact embryos. These results suggest that the intact ECM normally transmits signals to inhibit repressor activity at the proximal G-string in aboral ectoderm cells. Consistent with these results were our findings which showed that in addition to expression in the aboral ectoderm, the proximal G-string mutation caused expression of the CAT gene in oral ectoderm cells. These studies suggested that the proximal G-string serves as a binding site for negative regulation of the LpS1 genes in oral ectoderm during development. We also examined trans -acting factors binding the proximal G-string following ECM disruption. Band shift gels revealed a predominant set of slower migrating nuclear proteins from ECM-disrupted embryos which bound the proximal G-string. This work suggested that ECM disruption initiates signaling that induces a repressor to bind the ECM RE and/or modifies ECM RE binding proteins, which in turn represses LpS1 gene activity.
Full Text
The Full Text of this article is available as a PDF (192.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams J. C., Watt F. M. An unusual strain of human keratinocytes which do not stratify or undergo terminal differentiation in culture. J Cell Biol. 1988 Nov;107(5):1927–1938. doi: 10.1083/jcb.107.5.1927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben-Ze'ev A., Robinson G. S., Bucher N. L., Farmer S. R. Cell-cell and cell-matrix interactions differentially regulate the expression of hepatic and cytoskeletal genes in primary cultures of rat hepatocytes. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2161–2165. doi: 10.1073/pnas.85.7.2161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benson S., Rawson R., Killian C., Wilt F. Role of the extracellular matrix in tissue-specific gene expression in the sea urchin embryo. Mol Reprod Dev. 1991 Jul;29(3):220–226. doi: 10.1002/mrd.1080290303. [DOI] [PubMed] [Google Scholar]
- Bissell D. M., Caron J. M., Babiss L. E., Friedman J. M. Transcriptional regulation of the albumin gene in cultured rat hepatocytes. Role of basement-membrane matrix. Mol Biol Med. 1990 Apr;7(2):187–197. [PubMed] [Google Scholar]
- Caron J. M. Induction of albumin gene transcription in hepatocytes by extracellular matrix proteins. Mol Cell Biol. 1990 Mar;10(3):1239–1243. doi: 10.1128/mcb.10.3.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen L. H., Bissell M. J. A novel regulatory mechanism for whey acidic protein gene expression. Cell Regul. 1989 Nov;1(1):45–54. doi: 10.1091/mbc.1.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cserjesi P., Fairley P., Brandhorst B. P. Functional analysis of the promoter of a sea urchin metallothionein gene. Biochem Cell Biol. 1992 Oct-Nov;70(10-11):1142–1150. doi: 10.1139/o92-160. [DOI] [PubMed] [Google Scholar]
- DiPersio C. M., Jackson D. A., Zaret K. S. The extracellular matrix coordinately modulates liver transcription factors and hepatocyte morphology. Mol Cell Biol. 1991 Sep;11(9):4405–4414. doi: 10.1128/mcb.11.9.4405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flytzanis C. N., Britten R. J., Davidson E. H. Ontogenic activation of a fusion gene introduced into sea urchin eggs. Proc Natl Acad Sci U S A. 1987 Jan;84(1):151–155. doi: 10.1073/pnas.84.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galéra P., Musso M., Ducy P., Karsenty G. c-Krox, a transcriptional regulator of type I collagen gene expression, is preferentially expressed in skin. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9372–9376. doi: 10.1073/pnas.91.20.9372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- George J. M., Seid C. A., Lee H., Tomlinson C. R. Two distinct forms of USF in the Lytechinus sea urchin embryo do not play a role in LpS1 gene inactivation upon disruption of the extracellular matrix. Mol Reprod Dev. 1996 Sep;45(1):1–9. doi: 10.1002/(SICI)1098-2795(199609)45:1<1::AID-MRD1>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
- Govindarajan V., Ramachandran R. K., George J. M., Shakes D. C., Tomlinson C. R. An ECM-bound, PDGF-like growth factor and a TGF-alpha-like growth factor are required for gastrulation and spiculogenesis in the Lytechinus embryo. Dev Biol. 1995 Dec;172(2):541–551. doi: 10.1006/dbio.1995.8059. [DOI] [PubMed] [Google Scholar]
- Hadley M. A., Byers S. W., Suárez-Quian C. A., Kleinman H. K., Dym M. Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J Cell Biol. 1985 Oct;101(4):1511–1522. doi: 10.1083/jcb.101.4.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hapgood J., Patterton D. Purification of an oligo(dG).oligo(dC)-binding sea urchin nuclear protein, suGF1: a family of G-string factors involved in gene regulation during development. Mol Cell Biol. 1994 Feb;14(2):1402–1409. doi: 10.1128/mcb.14.2.1402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harkey M. A., Whiteley H. R., Whiteley A. H. Differential expression of the msp130 gene among skeletal lineage cells in the sea urchin embryo: a three dimensional in situ hybridization analysis. Mech Dev. 1992 May;37(3):173–184. doi: 10.1016/0925-4773(92)90079-y. [DOI] [PubMed] [Google Scholar]
- Karsenty G., de Crombrugghe B. Conservation of binding sites for regulatory factors in the coordinately expressed alpha 1 (I) and alpha 2 (I) collagen promoters. Biochem Biophys Res Commun. 1991 May 31;177(1):538–544. doi: 10.1016/0006-291x(91)92017-e. [DOI] [PubMed] [Google Scholar]
- Karsenty G., de Crombrugghe B. Two different negative and one positive regulatory factors interact with a short promoter segment of the alpha 1 (I) collagen gene. J Biol Chem. 1990 Jun 15;265(17):9934–9942. [PubMed] [Google Scholar]
- Lin C. Q., Bissell M. J. Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J. 1993 Jun;7(9):737–743. doi: 10.1096/fasebj.7.9.8330681. [DOI] [PubMed] [Google Scholar]
- Liu J. K., DiPersio C. M., Zaret K. S. Extracellular signals that regulate liver transcription factors during hepatic differentiation in vitro. Mol Cell Biol. 1991 Feb;11(2):773–784. doi: 10.1128/mcb.11.2.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholson L. J., Watt F. M. Decreased expression of fibronectin and the alpha 5 beta 1 integrin during terminal differentiation of human keratinocytes. J Cell Sci. 1991 Feb;98(Pt 2):225–232. doi: 10.1242/jcs.98.2.225. [DOI] [PubMed] [Google Scholar]
- Patterton D., Hapgood J. suGF1 binds in the major groove of its oligo(dG).oligo(dC) recognition sequence and is excluded by a positioned nucleosome core. Mol Cell Biol. 1994 Feb;14(2):1410–1418. doi: 10.1128/mcb.14.2.1410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramachandran R. K., Govindarajan V., Seid C. A., Patil S., Tomlinson C. R. Role for platelet-derived growth factor-like and epidermal growth factor-like signaling pathways in gastrulation and spiculogenesis in the Lytechinus sea urchin embryo. Dev Dyn. 1995 Sep;204(1):77–88. doi: 10.1002/aja.1002040110. [DOI] [PubMed] [Google Scholar]
- Ramachandran R. K., Seid C. A., Lee H., Tomlinson C. R. PDGF-BB and TGF-alpha rescue gastrulation, spiculogenesis, and LpS1 expression in collagen-disrupted embryos of the sea urchin genus Lytechinus. Mech Dev. 1993 Nov;44(1):33–40. doi: 10.1016/0925-4773(93)90014-o. [DOI] [PubMed] [Google Scholar]
- Ramachandran R. K., Wikramanayake A. H., Uzman J. A., Govindarajan V., Tomlinson C. R. Disruption of gastrulation and oral-aboral ectoderm differentiation in the Lytechinus pictus embryo by a dominant/negative PDGF receptor. Development. 1997 Jun;124(12):2355–2364. doi: 10.1242/dev.124.12.2355. [DOI] [PubMed] [Google Scholar]
- Schmidhauser C., Bissell M. J., Myers C. A., Casperson G. F. Extracellular matrix and hormones transcriptionally regulate bovine beta-casein 5' sequences in stably transfected mouse mammary cells. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9118–9122. doi: 10.1073/pnas.87.23.9118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidhauser C., Casperson G. F., Myers C. A., Sanzo K. T., Bolten S., Bissell M. J. A novel transcriptional enhancer is involved in the prolactin- and extracellular matrix-dependent regulation of beta-casein gene expression. Mol Biol Cell. 1992 Jun;3(6):699–709. doi: 10.1091/mbc.3.6.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seid C. A., George J. M., Sater A. K., Kozlowski M. T., Lee H., Govindarajan V., Ramachandran R. K., Tomlinson C. R. USF in the Lytechinus sea urchin embryo may act as a transcriptional repressor in non-aboral ectoderm cells for the cell lineage-specific expression of the LpS1 genes. J Mol Biol. 1996 Nov 22;264(1):7–19. doi: 10.1006/jmbi.1996.0619. [DOI] [PubMed] [Google Scholar]
- Seid C. A., Sater A. K., Falzone R. L., Tomlinson C. R. A tissue-specific repressor in the sea urchin embryo of Lytechinus pictus binds the distal G-string element in the LpS1-beta promoter. DNA Cell Biol. 1996 Jun;15(6):511–517. doi: 10.1089/dna.1996.15.511. [DOI] [PubMed] [Google Scholar]
- Streuli C. H., Schmidhauser C., Kobrin M., Bissell M. J., Derynck R. Extracellular matrix regulates expression of the TGF-beta 1 gene. J Cell Biol. 1993 Jan;120(1):253–260. doi: 10.1083/jcb.120.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomlinson C. R., Klein W. H. Temporal and spatial transcriptional regulation of the aboral ectoderm-specific Spec genes during sea urchin embryogenesis. Mol Reprod Dev. 1990 Apr;25(4):328–338. doi: 10.1002/mrd.1080250404. [DOI] [PubMed] [Google Scholar]
- Tomlinson C. R., Kozlowski M. T., Klein W. H. Ectoderm nuclei from sea urchin embryos contain a Spec-DNA binding protein similar to the vertebrate transcription factor USF. Development. 1990 Sep;110(1):259–272. doi: 10.1242/dev.110.1.259. [DOI] [PubMed] [Google Scholar]
- Wang W., Klein W. H. A G/C-rich DNA-regulatory element controls positive expression of the sea urchin Lytechinus pictus aboral ectoderm-specific LpS1 gene. DNA Cell Biol. 1996 Feb;15(2):133–145. doi: 10.1089/dna.1996.15.133. [DOI] [PubMed] [Google Scholar]
- Watt F. M., Jordan P. W., O'Neill C. H. Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5576–5580. doi: 10.1073/pnas.85.15.5576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wessel G. M., Marchase R. B., McClay D. R. Ontogeny of the basal lamina in the sea urchin embryo. Dev Biol. 1984 May;103(1):235–245. doi: 10.1016/0012-1606(84)90025-3. [DOI] [PubMed] [Google Scholar]
- Wessel G. M., McClay D. R. Gastrulation in the sea urchin embryo requires the deposition of crosslinked collagen within the extracellular matrix. Dev Biol. 1987 May;121(1):149–165. doi: 10.1016/0012-1606(87)90148-5. [DOI] [PubMed] [Google Scholar]
- Wessel G. M., Zhang W., Tomlinson C. R., Lennarz W. J., Klein W. H. Transcription of the Spec 1-like gene of Lytechinus is selectively inhibited in response to disruption of the extracellular matrix. Development. 1989 Jun;106(2):355–365. doi: 10.1242/dev.106.2.355. [DOI] [PubMed] [Google Scholar]
- Xiang M. Q., Bédard P. A., Wessel G., Filion M., Brandhorst B. P., Klein W. H. Tandem duplication and divergence of a sea urchin protein belonging to the troponin C superfamily. J Biol Chem. 1988 Nov 15;263(32):17173–17180. [PubMed] [Google Scholar]
- Xiang M. Q., Ge T., Tomlinson C. R., Klein W. H. Structure and promoter activity of the LpS1 genes of Lytechinus pictus. Duplicated exons account for LpS1 proteins with eight calcium binding domains. J Biol Chem. 1991 Jun 5;266(16):10524–10533. [PubMed] [Google Scholar]
- Xiang M., Lu S. Y., Musso M., Karsenty G., Klein W. H. A G-string positive cis-regulatory element in the LpS1 promoter binds two distinct nuclear factors distributed non-uniformly in Lytechinus pictus embryos. Development. 1991 Dec;113(4):1345–1355. doi: 10.1242/dev.113.4.1345. [DOI] [PubMed] [Google Scholar]
- Zeller R. W., Coffman J. A., Harrington M. G., Britten R. J., Davidson E. H. SpGCF1, a sea urchin embryo DNA-binding protein, exists as five nested variants encoded by a single mRNA. Dev Biol. 1995 Jun;169(2):713–727. doi: 10.1006/dbio.1995.1181. [DOI] [PubMed] [Google Scholar]
- Zeller R. W., Griffith J. D., Moore J. G., Kirchhamer C. V., Britten R. J., Davidson E. H. A multimerizing transcription factor of sea urchin embryos capable of looping DNA. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2989–2993. doi: 10.1073/pnas.92.7.2989. [DOI] [PMC free article] [PubMed] [Google Scholar]