Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Aug 15;25(16):3248–3254. doi: 10.1093/nar/25.16.3248

Enhancement of the nucleosomal pattern in sequences of lower complexity.

A Bolshoy 1, K Shapiro 1, E N Trifonov 1, I Ioshikhes 1
PMCID: PMC146871  PMID: 9241237

Abstract

Intuitively, the complexity of a given DNA sequence is related to the number of various superimposed biological messages it contains. Here we assess the expectation that in nucleosome DNA sequences of lower linguistic complexity, the nucleosome DNA positioning pattern would be more pronounced than in those of higher linguistic complexity. The nucleosome DNA positioning pattern is one of the weakest (highly degenerate) sequence patterns. It has been extracted recently by specially designed multiple alignment procedures. We applied the most sensitive of these procedures to nearly equal subsets of a nucleosome database separated according to linguistic complexity. The pattern extracted from the subset of the simpler nucleosome sequences not only possesses all major attributes of the known nucleosomal pattern, but is substantially stronger with respect to amplitude in comparison with the total database. This result constitutes the first demonstration that a weak pattern can be significantly enhanced by selective treatment of a lower complexity subset of the sequence ensemble under consideration.

Full Text

The Full Text of this article is available as a PDF (86.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolshoy A. CC dinucleotides contribute to the bending of DNA in chromatin. Nat Struct Biol. 1995 Jun;2(6):446–448. doi: 10.1038/nsb0695-446. [DOI] [PubMed] [Google Scholar]
  2. Bolshoy A., Ioshikhes I., Trifonov E. N. Applicability of the multiple alignment algorithm for detection of weak patterns: periodically distributed DNA pattern as a study case. Comput Appl Biosci. 1996 Oct;12(5):383–389. doi: 10.1093/bioinformatics/12.5.383. [DOI] [PubMed] [Google Scholar]
  3. Buttinelli M., Di Mauro E., Negri R. Multiple nucleosome positioning with unique rotational setting for the Saccharomyces cerevisiae 5S rRNA gene in vitro and in vivo. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9315–9319. doi: 10.1073/pnas.90.20.9315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Drew H. R., Travers A. A. DNA bending and its relation to nucleosome positioning. J Mol Biol. 1985 Dec 20;186(4):773–790. doi: 10.1016/0022-2836(85)90396-1. [DOI] [PubMed] [Google Scholar]
  5. Ioshikhes I., Bolshoy A., Derenshteyn K., Borodovsky M., Trifonov E. N. Nucleosome DNA sequence pattern revealed by multiple alignment of experimentally mapped sequences. J Mol Biol. 1996 Sep 20;262(2):129–139. doi: 10.1006/jmbi.1996.0503. [DOI] [PubMed] [Google Scholar]
  6. Ioshikhes I., Bolshoy A., Trifonov E. N. Preferred positions of AA and TT dinucleotides in aligned nucleosomal DNA sequences. J Biomol Struct Dyn. 1992 Jun;9(6):1111–1117. doi: 10.1080/07391102.1992.10507982. [DOI] [PubMed] [Google Scholar]
  7. Ioshikhes I., Trifonov E. N. Nucleosomal DNA sequence database. Nucleic Acids Res. 1993 Oct 25;21(21):4857–4859. doi: 10.1093/nar/21.21.4857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jackson J. R., Benyajati C. DNA-histone interactions are sufficient to position a single nucleosome juxtaposing Drosophila Adh adult enhancer and distal promoter. Nucleic Acids Res. 1993 Feb 25;21(4):957–967. doi: 10.1093/nar/21.4.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Schild C., Claret F. X., Wahli W., Wolffe A. P. A nucleosome-dependent static loop potentiates estrogen-regulated transcription from the Xenopus vitellogenin B1 promoter in vitro. EMBO J. 1993 Feb;12(2):423–433. doi: 10.1002/j.1460-2075.1993.tb05674.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Simpson R. T. Nucleosome positioning: occurrence, mechanisms, and functional consequences. Prog Nucleic Acid Res Mol Biol. 1991;40:143–184. doi: 10.1016/s0079-6603(08)60841-7. [DOI] [PubMed] [Google Scholar]
  11. Trifonov E. N. Sequence-dependent deformational anisotropy of chromatin DNA. Nucleic Acids Res. 1980 Sep 11;8(17):4041–4053. doi: 10.1093/nar/8.17.4041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Trifonov E. N., Sussman J. L. The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3816–3820. doi: 10.1073/pnas.77.7.3816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Trifonov E. N. The multiple codes of nucleotide sequences. Bull Math Biol. 1989;51(4):417–432. doi: 10.1007/BF02460081. [DOI] [PubMed] [Google Scholar]
  14. Wolffe A. P. Nucleosome positioning and modification: chromatin structures that potentiate transcription. Trends Biochem Sci. 1994 Jun;19(6):240–244. doi: 10.1016/0968-0004(94)90148-1. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES