Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Aug 15;25(16):3362–3370. doi: 10.1093/nar/25.16.3362

RNA-protein interactions within the 3 ' untranslated region of vimentin mRNA.

Z E Zehner 1, R K Shepherd 1, J Gabryszuk 1, T F Fu 1, M Al-Ali 1, W M Holmes 1
PMCID: PMC146884  PMID: 9241253

Abstract

Several functions have been attributed to protein binding within the 3'untranslated region (3'UTR) of mRNA, including mRNA localization, stability, and translational repression. Vimentin is an intermediate filament protein whose 3'untranslated sequence is highly conserved between species. In order to identify sequences that might play a role in vimentin mRNA function, we synthesized32P-labeled RNA from different regions of vimentin's 3'UTR and assayed for protein binding with HeLa extracts using band shift assays. Sequences required for binding are contained within a region 61-114 nucleotides downstream of the stop codon, a region which is highly conserved from Xenopus to man. As judged by competition assays, binding is specific. Solution probing studies of 32P-labeled RNA with various nucleases and lead support a complex stem and loop structure for this region. Finally, UV cross-linking of the RNA-protein complex identifies an RNA binding protein of 46 kDa. Fractionation of a HeLa extract on a sizing column suggests that in addition to the 46 kDa protein, larger complexes containing additional protein(s) can be identified. Vimentin mRNA has been shown to be localized to the perinuclear region of the cytoplasm, possibly at sites of intermediate filament assembly. To date, all sequences required for localization of various mRNAs have been confined to the 3'UTR. Therefore, we hypothesize that this region and associated protein(s) might be important for vimentin mRNA function such as in localization.

Full Text

The Full Text of this article is available as a PDF (998.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloemendal H., Quax W., Quax-Jeuken Y., Dodemont H., Ramaekers F., Dunia I., Benedetti L. Organization and expression of the vimentin gene. Mol Biol Rep. 1983 May;9(1-2):115–118. doi: 10.1007/BF00777481. [DOI] [PubMed] [Google Scholar]
  2. Borer R. A., Lehner C. F., Eppenberger H. M., Nigg E. A. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell. 1989 Feb 10;56(3):379–390. doi: 10.1016/0092-8674(89)90241-9. [DOI] [PubMed] [Google Scholar]
  3. Bussemakers M. J., Verhaegh G. W., van Bokhoven A., Debruyne F. M., Schalken J. A. Differential expression of vimentin in rat prostatic tumors. Biochem Biophys Res Commun. 1992 Feb 14;182(3):1254–1259. doi: 10.1016/0006-291x(92)91866-o. [DOI] [PubMed] [Google Scholar]
  4. Cripe L., Morris E., Fulton A. B. Vimentin mRNA location changes during muscle development. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2724–2728. doi: 10.1073/pnas.90.7.2724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Decker C. J., Parker R. Diversity of cytoplasmic functions for the 3' untranslated region of eukaryotic transcripts. Curr Opin Cell Biol. 1995 Jun;7(3):386–392. doi: 10.1016/0955-0674(95)80094-8. [DOI] [PubMed] [Google Scholar]
  6. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dignam J. D. Preparation of extracts from higher eukaryotes. Methods Enzymol. 1990;182:194–203. doi: 10.1016/0076-6879(90)82017-v. [DOI] [PubMed] [Google Scholar]
  8. Dominski Z., Sumerel J., Hanson R. J., Marzluff W. F. The polyribosomal protein bound to the 3' end of histone mRNA can function in histone pre-mRNA processing. RNA. 1995 Nov;1(9):915–923. [PMC free article] [PubMed] [Google Scholar]
  9. Dreyfuss G., Matunis M. J., Piñol-Roma S., Burd C. G. hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem. 1993;62:289–321. doi: 10.1146/annurev.bi.62.070193.001445. [DOI] [PubMed] [Google Scholar]
  10. Felden B., Florentz C., Giegé R., Westhof E. Solution structure of the 3'-end of brome mosaic virus genomic RNAs. Conformational mimicry with canonical tRNAs. J Mol Biol. 1994 Jan 14;235(2):508–531. doi: 10.1006/jmbi.1994.1010. [DOI] [PubMed] [Google Scholar]
  11. Ferrari S., Battini R., Kaczmarek L., Rittling S., Calabretta B., de Riel J. K., Philiponis V., Wei J. F., Baserga R. Coding sequence and growth regulation of the human vimentin gene. Mol Cell Biol. 1986 Nov;6(11):3614–3620. doi: 10.1128/mcb.6.11.3614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ferrier A. F., Hirschhorn R. R. Growth-regulated expression of vimentin in hamster fibroblasts is a result of increased transcription. J Cell Biochem. 1992 Nov;50(3):245–254. doi: 10.1002/jcb.240500305. [DOI] [PubMed] [Google Scholar]
  13. Ferrier A. F., Hirschhorn R. R. Growth-regulated expression of vimentin in hamster fibroblasts is a result of increased transcription. J Cell Biochem. 1992 Nov;50(3):245–254. doi: 10.1002/jcb.240500305. [DOI] [PubMed] [Google Scholar]
  14. Fulton A. B. Spatial organization of the synthesis of cytoskeletal proteins. J Cell Biochem. 1993 Jun;52(2):148–152. doi: 10.1002/jcb.240520206. [DOI] [PubMed] [Google Scholar]
  15. Gavis E. R., Lehmann R. Localization of nanos RNA controls embryonic polarity. Cell. 1992 Oct 16;71(2):301–313. doi: 10.1016/0092-8674(92)90358-j. [DOI] [PubMed] [Google Scholar]
  16. Gavis E. R., Lehmann R. Translational regulation of nanos by RNA localization. Nature. 1994 May 26;369(6478):315–318. doi: 10.1038/369315a0. [DOI] [PubMed] [Google Scholar]
  17. Gay D. A., Sisodia S. S., Cleveland D. W. Autoregulatory control of beta-tubulin mRNA stability is linked to translation elongation. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5763–5767. doi: 10.1073/pnas.86.15.5763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gottlieb E. The 3' untranslated region of localized maternal messages contains a conserved motif involved in mRNA localization. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7164–7168. doi: 10.1073/pnas.89.15.7164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Grodberg J., Dunn J. J. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol. 1988 Mar;170(3):1245–1253. doi: 10.1128/jb.170.3.1245-1253.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hanson R. J., Sun J., Willis D. G., Marzluff W. F. Efficient extraction and partial purification of the polyribosome-associated stem-loop binding protein bound to the 3' end of histone mRNA. Biochemistry. 1996 Feb 20;35(7):2146–2156. doi: 10.1021/bi9521856. [DOI] [PubMed] [Google Scholar]
  21. Hennekes H., Kühn S., Traub P. Coding sequence and flanking regions of the mouse vimentin gene. Mol Gen Genet. 1990 Mar;221(1):33–36. doi: 10.1007/BF00280364. [DOI] [PubMed] [Google Scholar]
  22. Herrmann H., Fouquet B., Franke W. W. Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin. Development. 1989 Feb;105(2):279–298. doi: 10.1242/dev.105.2.279. [DOI] [PubMed] [Google Scholar]
  23. Hesketh J. Association of ribosomes with myofibrils and microfilaments: a role in the spatial organization of protein synthesis. Biochem Soc Trans. 1991 Nov;19(4):1103–1107. doi: 10.1042/bst0191103. [DOI] [PubMed] [Google Scholar]
  24. Hess J. F., Casselman J. T., FitzGerald P. G. Nucleotide sequence of the bovine vimentin-encoding cDNA. Gene. 1994 Mar 25;140(2):257–259. doi: 10.1016/0378-1119(94)90554-1. [DOI] [PubMed] [Google Scholar]
  25. Hirschhorn R. R. Gene expression in a temperature-sensitive mutant of the cell cycle. SAAS Bull Biochem Biotechnol. 1994;7:31–35. [PubMed] [Google Scholar]
  26. Honoré B., Madsen P., Basse B., Andersen A., Walbum E., Celis J. E., Leffers H. Nucleotide sequence of cDNA covering the complete coding part of the human vimentin gene. Nucleic Acids Res. 1990 Nov 25;18(22):6692–6692. doi: 10.1093/nar/18.22.6692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jackson R. J. Cytoplasmic regulation of mRNA function: the importance of the 3' untranslated region. Cell. 1993 Jul 16;74(1):9–14. doi: 10.1016/0092-8674(93)90290-7. [DOI] [PubMed] [Google Scholar]
  28. Jaeger J. A., Turner D. H., Zuker M. Improved predictions of secondary structures for RNA. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7706–7710. doi: 10.1073/pnas.86.20.7706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Keith G., Pixa G., Fix C., Dirheimer G. Primary structure of three tRNAs from brewer's yeast: tRNAPro2, tRNAHis1 and tRNAHis2. Biochimie. 1983 Nov-Dec;65(11-12):661–672. doi: 10.1016/s0300-9084(84)80030-9. [DOI] [PubMed] [Google Scholar]
  30. Keller W. No end yet to messenger RNA 3' processing! Cell. 1995 Jun 16;81(6):829–832. doi: 10.1016/0092-8674(95)90001-2. [DOI] [PubMed] [Google Scholar]
  31. Kislauskis E. H., Li Z., Singer R. H., Taneja K. L. Isoform-specific 3'-untranslated sequences sort alpha-cardiac and beta-cytoplasmic actin messenger RNAs to different cytoplasmic compartments. J Cell Biol. 1993 Oct;123(1):165–172. doi: 10.1083/jcb.123.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kislauskis E. H., Singer R. H. Determinants of mRNA localization. Curr Opin Cell Biol. 1992 Dec;4(6):975–978. doi: 10.1016/0955-0674(92)90128-y. [DOI] [PubMed] [Google Scholar]
  33. Kislauskis E. H., Zhu X., Singer R. H. Sequences responsible for intracellular localization of beta-actin messenger RNA also affect cell phenotype. J Cell Biol. 1994 Oct;127(2):441–451. doi: 10.1083/jcb.127.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lawrence J. B., Singer R. H. Intracellular localization of messenger RNAs for cytoskeletal proteins. Cell. 1986 May 9;45(3):407–415. doi: 10.1016/0092-8674(86)90326-0. [DOI] [PubMed] [Google Scholar]
  35. McCarthy J. E., Kollmus H. Cytoplasmic mRNA-protein interactions in eukaryotic gene expression. Trends Biochem Sci. 1995 May;20(5):191–197. doi: 10.1016/s0968-0004(00)89006-4. [DOI] [PubMed] [Google Scholar]
  36. McDevitt M. A., Hart R. P., Wong W. W., Nevins J. R. Sequences capable of restoring poly(A) site function define two distinct downstream elements. EMBO J. 1986 Nov;5(11):2907–2913. doi: 10.1002/j.1460-2075.1986.tb04586.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Morris E. J., Fulton A. B. Rearrangement of mRNAs for costamere proteins during costamere development in cultured skeletal muscle from chicken. J Cell Sci. 1994 Mar;107(Pt 3):377–386. doi: 10.1242/jcs.107.3.377. [DOI] [PubMed] [Google Scholar]
  38. Pachter J. S., Yen T. J., Cleveland D. W. Autoregulation of tubulin expression is achieved through specific degradation of polysomal tubulin mRNAs. Cell. 1987 Oct 23;51(2):283–292. doi: 10.1016/0092-8674(87)90155-3. [DOI] [PubMed] [Google Scholar]
  39. Parry D. A., Steinert P. M. Intermediate filament structure. Curr Opin Cell Biol. 1992 Feb;4(1):94–98. doi: 10.1016/0955-0674(92)90064-j. [DOI] [PubMed] [Google Scholar]
  40. Peek R., Pruijn G. J., Van Venrooij W. J. Interaction of the La (SS-B) autoantigen with small ribosomal subunits. Eur J Biochem. 1996 Mar 1;236(2):649–655. doi: 10.1111/j.1432-1033.1996.0649d.x. [DOI] [PubMed] [Google Scholar]
  41. Perreau J., Lilienbaum A., Vasseur M., Paulin D. Nucleotide sequence of the human vimentin gene and regulation of its transcription in tissues and cultured cells. Gene. 1988;62(1):7–16. doi: 10.1016/0378-1119(88)90575-6. [DOI] [PubMed] [Google Scholar]
  42. Rongo C., Gavis E. R., Lehmann R. Localization of oskar RNA regulates oskar translation and requires Oskar protein. Development. 1995 Sep;121(9):2737–2746. doi: 10.1242/dev.121.9.2737. [DOI] [PubMed] [Google Scholar]
  43. Ross A. F., Oleynikov Y., Kislauskis E. H., Taneja K. L., Singer R. H. Characterization of a beta-actin mRNA zipcode-binding protein. Mol Cell Biol. 1997 Apr;17(4):2158–2165. doi: 10.1128/mcb.17.4.2158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schwartz M. L., Bruce J., Shneidman P. S., Schlaepfer W. W. Deletion of 3'-untranslated region alters the level of mRNA expression of a neurofilament light subunit transgene. J Biol Chem. 1995 Nov 3;270(44):26364–26369. doi: 10.1074/jbc.270.44.26364. [DOI] [PubMed] [Google Scholar]
  45. Singer R. H. RNA zipcodes for cytoplasmic addresses. Curr Biol. 1993 Oct 1;3(10):719–721. doi: 10.1016/0960-9822(93)90079-4. [DOI] [PubMed] [Google Scholar]
  46. Singer R. H. The cytoskeleton and mRNA localization. Curr Opin Cell Biol. 1992 Feb;4(1):15–19. doi: 10.1016/0955-0674(92)90053-f. [DOI] [PubMed] [Google Scholar]
  47. Soellner P., Quinlan R. A., Franke W. W. Identification of a distinct soluble subunit of an intermediate filament protein: tetrameric vimentin from living cells. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7929–7933. doi: 10.1073/pnas.82.23.7929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. St Johnston D. The intracellular localization of messenger RNAs. Cell. 1995 Apr 21;81(2):161–170. doi: 10.1016/0092-8674(95)90324-0. [DOI] [PubMed] [Google Scholar]
  49. Steinert P. M., Liem R. K. Intermediate filament dynamics. Cell. 1990 Feb 23;60(4):521–523. doi: 10.1016/0092-8674(90)90651-t. [DOI] [PubMed] [Google Scholar]
  50. Steinert P. M., Parry D. A. Intermediate filaments: conformity and diversity of expression and structure. Annu Rev Cell Biol. 1985;1:41–65. doi: 10.1146/annurev.cb.01.110185.000353. [DOI] [PubMed] [Google Scholar]
  51. Steinert P. M., Roop D. R. Molecular and cellular biology of intermediate filaments. Annu Rev Biochem. 1988;57:593–625. doi: 10.1146/annurev.bi.57.070188.003113. [DOI] [PubMed] [Google Scholar]
  52. Steinert P. M., Steven A. C., Roop D. R. The molecular biology of intermediate filaments. Cell. 1985 Sep;42(2):411–420. doi: 10.1016/0092-8674(85)90098-4. [DOI] [PubMed] [Google Scholar]
  53. Sundell C. L., Singer R. H. Actin mRNA localizes in the absence of protein synthesis. J Cell Biol. 1990 Dec;111(6 Pt 1):2397–2403. doi: 10.1083/jcb.111.6.2397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sundell C. L., Singer R. H. Requirement of microfilaments in sorting of actin messenger RNA. Science. 1991 Sep 13;253(5025):1275–1277. doi: 10.1126/science.1891715. [DOI] [PubMed] [Google Scholar]
  55. Svitkin Y. V., Pause A., Sonenberg N. La autoantigen alleviates translational repression by the 5' leader sequence of the human immunodeficiency virus type 1 mRNA. J Virol. 1994 Nov;68(11):7001–7007. doi: 10.1128/jvi.68.11.7001-7007.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wilhelm J. E., Vale R. D. RNA on the move: the mRNA localization pathway. J Cell Biol. 1993 Oct;123(2):269–274. doi: 10.1083/jcb.123.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Wilson I. A., Brindle K. M., Fulton A. M. Differential localization of the mRNA of the M and B isoforms of creatine kinase in myoblasts. Biochem J. 1995 Jun 1;308(Pt 2):599–605. doi: 10.1042/bj3080599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yen T. J., Gay D. A., Pachter J. S., Cleveland D. W. Autoregulated changes in stability of polyribosome-bound beta-tubulin mRNAs are specified by the first 13 translated nucleotides. Mol Cell Biol. 1988 Mar;8(3):1224–1235. doi: 10.1128/mcb.8.3.1224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Zehner Z. E., Li Y., Roe B. A., Paterson B. M., Sax C. M. The chicken vimentin gene. Nucleotide sequence, regulatory elements, and comparison to the hamster gene. J Biol Chem. 1987 Jun 15;262(17):8112–8120. [PubMed] [Google Scholar]
  60. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES