Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Aug 15;25(16):3235–3241. doi: 10.1093/nar/25.16.3235

The elimination of primer-dimer accumulation in PCR.

J Brownie 1, S Shawcross 1, J Theaker 1, D Whitcombe 1, R Ferrie 1, C Newton 1, S Little 1
PMCID: PMC146890  PMID: 9241236

Abstract

We attempted to produce primer-dimers (PDs) from a variety of primers with differing types and extents of complementarity. Where PDs were produced they were cloned and sequenced. We were unable to produce detectable PDs either with individual primers alone or with similar sequence primers even if they had 3'complementarity. These observations led to the hypothesis that a system could be developed whereby the accumulation of PDs in a PCR may be eliminated. We demonstrate a method for the general suppression of PD formation that uses a sequence of additional nucleotides (a Tail) at the 5' ends of amplimers. Tailed amplimers are present at low concentration and only participate during early cycles of PCR. In subsequent PCR cycles, amplification is achieved using a single primer that has the same sequence as that of the Tail portion of the early cycle primers, here we refer to this as a Tag. When products are small, as with PDs, there is a high local concentration of complementary sequences derived from the Tail. This favours the annealing of the complementary ends of a single strand produced by tailed primer interactions and gives rise to 'pan-handle' structures. The formation of these outcompetes the annealing of further Tag primers thereby preventing the accumulation of non-specific PD products. This aids the design of large multiplex reactions and provides a means of detecting specific amplicons directly in the reaction vessel by using an intercalating dye.

Full Text

The Full Text of this article is available as a PDF (181.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beggs A. H., Koenig M., Boyce F. M., Kunkel L. M. Detection of 98% of DMD/BMD gene deletions by polymerase chain reaction. Hum Genet. 1990 Nov;86(1):45–48. doi: 10.1007/BF00205170. [DOI] [PubMed] [Google Scholar]
  2. Bej A. K., Mahbubani M. H., Miller R., DiCesare J. L., Haff L., Atlas R. M. Multiplex PCR amplification and immobilized capture probes for detection of bacterial pathogens and indicators in water. Mol Cell Probes. 1990 Oct;4(5):353–365. doi: 10.1016/0890-8508(90)90026-v. [DOI] [PubMed] [Google Scholar]
  3. Chamberlain J. S., Gibbs R. A., Ranier J. E., Nguyen P. N., Caskey C. T. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 1988 Dec 9;16(23):11141–11156. doi: 10.1093/nar/16.23.11141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chou Q., Russell M., Birch D. E., Raymond J., Bloch W. Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res. 1992 Apr 11;20(7):1717–1723. doi: 10.1093/nar/20.7.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. D'Aquila R. T., Bechtel L. J., Videler J. A., Eron J. J., Gorczyca P., Kaplan J. C. Maximizing sensitivity and specificity of PCR by pre-amplification heating. Nucleic Acids Res. 1991 Jul 11;19(13):3749–3749. doi: 10.1093/nar/19.13.3749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Don R. H., Cox P. T., Wainwright B. J., Baker K., Mattick J. S. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 1991 Jul 25;19(14):4008–4008. doi: 10.1093/nar/19.14.4008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edwards M. C., Gibbs R. A. Multiplex PCR: advantages, development, and applications. PCR Methods Appl. 1994 Feb;3(4):S65–S75. doi: 10.1101/gr.3.4.s65. [DOI] [PubMed] [Google Scholar]
  8. Ferrie R. M., Schwarz M. J., Robertson N. H., Vaudin S., Super M., Malone G., Little S. Development, multiplexing, and application of ARMS tests for common mutations in the CFTR gene. Am J Hum Genet. 1992 Aug;51(2):251–262. [PMC free article] [PubMed] [Google Scholar]
  9. Jeffreys A. J., MacLeod A., Tamaki K., Neil D. L., Monckton D. G. Minisatellite repeat coding as a digital approach to DNA typing. Nature. 1991 Nov 21;354(6350):204–209. doi: 10.1038/354204a0. [DOI] [PubMed] [Google Scholar]
  10. Kerem B. S., Zielenski J., Markiewicz D., Bozon D., Gazit E., Yahav J., Kennedy D., Riordan J. R., Collins F. S., Rommens J. M. Identification of mutations in regions corresponding to the two putative nucleotide (ATP)-binding folds of the cystic fibrosis gene. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8447–8451. doi: 10.1073/pnas.87.21.8447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kwok S., Higuchi R. Avoiding false positives with PCR. Nature. 1989 May 18;339(6221):237–238. doi: 10.1038/339237a0. [DOI] [PubMed] [Google Scholar]
  12. Lohmann D., Horsthemke B., Gillessen-Kaesbach G., Stefani F. H., Höfler H. Detection of small RB1 gene deletions in retinoblastoma by multiplex PCR and high-resolution gel electrophoresis. Hum Genet. 1992 Apr;89(1):49–53. doi: 10.1007/BF00207041. [DOI] [PubMed] [Google Scholar]
  13. Ludwig E. H., Blackhart B. D., Pierotti V. R., Caiati L., Fortier C., Knott T., Scott J., Mahley R. W., Levy-Wilson B., McCarthy B. J. DNA sequence of the human apolipoprotein B gene. DNA. 1987 Aug;6(4):363–372. doi: 10.1089/dna.1987.6.363. [DOI] [PubMed] [Google Scholar]
  14. Mutirangura A., Greenberg F., Butler M. G., Malcolm S., Nicholls R. D., Chakravarti A., Ledbetter D. H. Multiplex PCR of three dinucleotide repeats in the Prader-Willi/Angelman critical region (15q11-q13): molecular diagnosis and mechanism of uniparental disomy. Hum Mol Genet. 1993 Feb;2(2):143–151. doi: 10.1093/hmg/2.2.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Newton C. R., Graham A., Heptinstall L. E., Powell S. J., Summers C., Kalsheker N., Smith J. C., Markham A. F. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989 Apr 11;17(7):2503–2516. doi: 10.1093/nar/17.7.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Richards R. I., Holman K., Lane S., Sutherland G. R., Callen D. F. Human chromosome 16 physical map: mapping of somatic cell hybrids using multiplex PCR deletion analysis of sequence tagged sites. Genomics. 1991 Aug;10(4):1047–1052. doi: 10.1016/0888-7543(91)90197-m. [DOI] [PubMed] [Google Scholar]
  17. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  18. Runnebaum I. B., Nagarajan M., Bowman M., Soto D., Sukumar S. Mutations in p53 as potential molecular markers for human breast cancer. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10657–10661. doi: 10.1073/pnas.88.23.10657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rychlik W. Selection of primers for polymerase chain reaction. Mol Biotechnol. 1995 Apr;3(2):129–134. doi: 10.1007/BF02789108. [DOI] [PubMed] [Google Scholar]
  20. Vidaud M., Fanen P., Martin J., Ghanem N., Nicolas S., Goossens M. Three point mutations in the CFTR gene in French cystic fibrosis patients: identification by denaturing gradient gel electrophoresis. Hum Genet. 1990 Sep;85(4):446–449. doi: 10.1007/BF02428305. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES