Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Aug 15;25(16):3290–3296. doi: 10.1093/nar/25.16.3290

In vivo fate of phosphorothioate antisense oligodeoxynucleotides: predominant uptake by scavenger receptors on endothelial liver cells.

M K Bijsterbosch 1, M Manoharan 1, E T Rump 1, R L De Vrueh 1, R van Veghel 1, K L Tivel 1, E A Biessen 1, C F Bennett 1, P D Cook 1, T J van Berkel 1
PMCID: PMC146893  PMID: 9241243

Abstract

Systemically administered phosphorothioate antisense oligodeoxynucleotides can specifically affect the expression of their target genes, which affords an exciting new strategy for therapeutic intervention. Earlier studies point to a major role of the liver in the disposition of these oligonucleotides. The aim of the present study was to identify the cell type(s) responsible for the liver uptake of phosphorothioate oligodeoxynucleotides and to examine the mechanisms involved. In our study we used ISIS-3082, a phosphorothioate antisense oligodeoxynucleotide specific for murine ICAM-1. Intravenously injected [3H]ISIS-3082 (dose: 1 mg/kg) was cleared from the circulation of rats with a half-life of 23.3+/-3.8 min. At 90 min after injection (>90% of [3H]ISIS-3082 cleared), the liver contained the most radioactivity, whereas the second-highest amount was recovered in the kidneys (40.5+/-1.4% and 17.9+/-1.3% of the dose, respectively). Of the remaining tissues, only spleen and bone marrow actively accumulated [3H]ISIS-3082. By injecting different doses of [3H]ISIS-3082, it was found that uptake by liver, spleen, bone marrow, and kidneys is saturable, which points to a receptor-mediated process. Subcellular fractionation of the liver indicates that ISIS-3082 is internalized and delivered to the lysosomes. Liver uptake occurs mainly (for 56.1+/-3.0%) by endothelial cells, whereas parenchymal and Kupffer cells account for 39.6+/-4.5 and 4.3+/-1.7% of the total liver uptake, respectively. Preinjection of polyinosinic acid substantially reduced uptake by liver and bone marrow, whereas polyadenylic acid was ineffective, which indicates that in these tissues scavenger receptors are involved in uptake. Polyadenylic acid, but not polyinosinic acid, reduced uptake by kidneys, which suggests renal uptake by scavenger receptors different from those in the liver. We conclude that scavenger receptors on rat liver endothelial cells play a predominant role in the plasma clearance of ISIS-3082. As scavenger receptors are also expressed on human endothelial liver cells, our findings are probably highly relevant for the therapeutic application of phosphorothioate oligodeoxynucleotides in humans. If the target gene is not localized in endothelial liver cells, the therapeutic effectiveness might be improved by developing delivery strategies that redirect the oligonucleotides to the actual target cells.

Full Text

The Full Text of this article is available as a PDF (106.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acton S. L., Scherer P. E., Lodish H. F., Krieger M. Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem. 1994 Aug 19;269(33):21003–21009. [PubMed] [Google Scholar]
  2. Acton S., Rigotti A., Landschulz K. T., Xu S., Hobbs H. H., Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996 Jan 26;271(5248):518–520. doi: 10.1126/science.271.5248.518. [DOI] [PubMed] [Google Scholar]
  3. Agrawal S., Temsamani J., Galbraith W., Tang J. Pharmacokinetics of antisense oligonucleotides. Clin Pharmacokinet. 1995 Jan;28(1):7–16. doi: 10.2165/00003088-199528010-00002. [DOI] [PubMed] [Google Scholar]
  4. Agrawal S., Temsamani J., Tang J. Y. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7595–7599. doi: 10.1073/pnas.88.17.7595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Akhtar S., Agrawal S. In vivo studies with antisense oligonucleotides. Trends Pharmacol Sci. 1997 Jan;18(1):12–18. doi: 10.1016/s0165-6147(96)01002-4. [DOI] [PubMed] [Google Scholar]
  6. Ashwell G., Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem. 1982;51:531–554. doi: 10.1146/annurev.bi.51.070182.002531. [DOI] [PubMed] [Google Scholar]
  7. Bijsterbosch M. K., Duursma A. M., Bouma J. M., Gruber M. Endocytosis and breakdown of mitochondrial malate dehydrogenase in the rat in vivo. Effects of suramin and leupeptin. Biochem J. 1982 Oct 15;208(1):61–67. doi: 10.1042/bj2080061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bijsterbosch M. K., Duursma A. M., Bouma J. M., Gruber M. Plasma clearance and endocytosis of cytosolic malate dehydrogenase in the rat. Biochem J. 1983 Feb 15;210(2):419–428. doi: 10.1042/bj2100419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bijsterbosch M. K., Ziere G. J., Van Berkel T. J. Lactosylated low density lipoprotein: a potential carrier for the site-specific delivery of drugs to Kupffer cells. Mol Pharmacol. 1989 Sep;36(3):484–489. [PubMed] [Google Scholar]
  10. CASTER W. O., SIMON A. B., ARMSTRONG W. D. Evans blue space in tissues of the rat. Am J Physiol. 1955 Nov;183(2):317–321. doi: 10.1152/ajplegacy.1955.183.2.317. [DOI] [PubMed] [Google Scholar]
  11. Crooke S. T., Bennett C. F. Progress in antisense oligonucleotide therapeutics. Annu Rev Pharmacol Toxicol. 1996;36:107–129. doi: 10.1146/annurev.pa.36.040196.000543. [DOI] [PubMed] [Google Scholar]
  12. Crooke S. T., Graham M. J., Zuckerman J. E., Brooks D., Conklin B. S., Cummins L. L., Greig M. J., Guinosso C. J., Kornbrust D., Manoharan M. Pharmacokinetic properties of several novel oligonucleotide analogs in mice. J Pharmacol Exp Ther. 1996 May;277(2):923–937. [PubMed] [Google Scholar]
  13. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dean N., McKay R., Miraglia L., Howard R., Cooper S., Giddings J., Nicklin P., Meister L., Ziel R., Geiger T. Inhibition of growth of human tumor cell lines in nude mice by an antisense of oligonucleotide inhibitor of protein kinase C-alpha expression. Cancer Res. 1996 Aug 1;56(15):3499–3507. [PubMed] [Google Scholar]
  15. Desjardins J. P., Iversen P. L. Inhibition of the rat cytochrome P450 3A2 by an antisense phosphorothioate oligodeoxynucleotide in vivo. J Pharmacol Exp Ther. 1995 Dec;275(3):1608–1613. [PubMed] [Google Scholar]
  16. Endemann G., Stanton L. W., Madden K. S., Bryant C. M., White R. T., Protter A. A. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem. 1993 Jun 5;268(16):11811–11816. [PubMed] [Google Scholar]
  17. Graham M. J., Freier S. M., Crooke R. M., Ecker D. J., Maslova R. N., Lesnik E. A. Tritium labeling of antisense oligonucleotides by exchange with tritiated water. Nucleic Acids Res. 1993 Aug 11;21(16):3737–3743. doi: 10.1093/nar/21.16.3737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kleinherenbrink-Stins M. F., van de Boom J. H., Schouten D., Roholl P. J., Niels van der Heyde M., Brouwer A., van Berkel T. J., Knook D. L. Visualization of the interaction of native and modified lipoproteins with parenchymal, endothelial and Kupffer cells from human liver. Hepatology. 1991 Jul;14(1):79–90. doi: 10.1002/hep.1840140114. [DOI] [PubMed] [Google Scholar]
  19. Krieger M., Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem. 1994;63:601–637. doi: 10.1146/annurev.bi.63.070194.003125. [DOI] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Lee H. S., Koh H. I. Visualization of binding and uptake of oxidized low density lipoproteins by cultured mesangial cells. Lab Invest. 1994 Aug;71(2):200–208. [PubMed] [Google Scholar]
  22. Milligan J. F., Matteucci M. D., Martin J. C. Current concepts in antisense drug design. J Med Chem. 1993 Jul 9;36(14):1923–1937. doi: 10.1021/jm00066a001. [DOI] [PubMed] [Google Scholar]
  23. Mommaas-Kienhuis A. M., Nagelkerke J. F., Vermeer B. J., Daems W. T., van Berkel T. J. Visualization of the interaction of native and modified low density lipoproteins with isolated rat liver cells. Eur J Cell Biol. 1985 Jul;38(1):42–50. [PubMed] [Google Scholar]
  24. Nagelkerke J. F., Barto K. P., van Berkel T. J. In vivo and in vitro uptake and degradation of acetylated low density lipoprotein by rat liver endothelial, Kupffer, and parenchymal cells. J Biol Chem. 1983 Oct 25;258(20):12221–12227. [PubMed] [Google Scholar]
  25. Nielsen P. E. DNA analogues with nonphosphodiester backbones. Annu Rev Biophys Biomol Struct. 1995;24:167–183. doi: 10.1146/annurev.bb.24.060195.001123. [DOI] [PubMed] [Google Scholar]
  26. Oberbauer R., Schreiner G. F., Meyer T. W. Renal uptake of an 18-mer phosphorothioate oligonucleotide. Kidney Int. 1995 Oct;48(4):1226–1232. doi: 10.1038/ki.1995.406. [DOI] [PubMed] [Google Scholar]
  27. Pearson A. M., Rich A., Krieger M. Polynucleotide binding to macrophage scavenger receptors depends on the formation of base-quartet-stabilized four-stranded helices. J Biol Chem. 1993 Feb 15;268(5):3546–3554. [PubMed] [Google Scholar]
  28. Pearson A., Lux A., Krieger M. Expression cloning of dSR-CI, a class C macrophage-specific scavenger receptor from Drosophila melanogaster. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):4056–4060. doi: 10.1073/pnas.92.9.4056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rifai A., Brysch W., Fadden K., Clark J., Schlingensiepen K. H. Clearance kinetics, biodistribution, and organ saturability of phosphorothioate oligodeoxynucleotides in mice. Am J Pathol. 1996 Aug;149(2):717–725. [PMC free article] [PubMed] [Google Scholar]
  30. Sands H., Gorey-Feret L. J., Cocuzza A. J., Hobbs F. W., Chidester D., Trainor G. L. Biodistribution and metabolism of internally 3H-labeled oligonucleotides. I. Comparison of a phosphodiester and a phosphorothioate. Mol Pharmacol. 1994 May;45(5):932–943. [PubMed] [Google Scholar]
  31. Sawai K., Mahato R. I., Oka Y., Takakura Y., Hashida M. Disposition of oligonucleotides in isolated perfused rat kidney: involvement of scavenger receptors in their renal uptake. J Pharmacol Exp Ther. 1996 Oct;279(1):284–290. [PubMed] [Google Scholar]
  32. Smedsrød B., De Bleser P. J., Braet F., Lovisetti P., Vanderkerken K., Wisse E., Geerts A. Cell biology of liver endothelial and Kupffer cells. Gut. 1994 Nov;35(11):1509–1516. doi: 10.1136/gut.35.11.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Srinivasan S. K., Iversen P. Review of in vivo pharmacokinetics and toxicology of phosphorothioate oligonucleotides. J Clin Lab Anal. 1995;9(2):129–137. doi: 10.1002/jcla.1860090210. [DOI] [PubMed] [Google Scholar]
  34. Srinivasan S. K., Tewary H. K., Iversen P. L. Characterization of binding sites, extent of binding, and drug interactions of oligonucleotides with albumin. Antisense Res Dev. 1995 Summer;5(2):131–139. doi: 10.1089/ard.1995.5.131. [DOI] [PubMed] [Google Scholar]
  35. Stein C. A., Cheng Y. C. Antisense oligonucleotides as therapeutic agents--is the bullet really magical? Science. 1993 Aug 20;261(5124):1004–1012. doi: 10.1126/science.8351515. [DOI] [PubMed] [Google Scholar]
  36. Stepkowski S. M., Tu Y., Condon T. P., Bennett C. F. Blocking of heart allograft rejection by intercellular adhesion molecule-1 antisense oligonucleotides alone or in combination with other immunosuppressive modalities. J Immunol. 1994 Dec 1;153(11):5336–5346. [PubMed] [Google Scholar]
  37. Suzaki K., Kobori S., Ide M., Sasahara T., Sakai M., Toyonaga T., Shinohara M., Miyazaki A., Horiuchi S., Takeda H. Acetyl-low density lipoprotein receptors on rat mesangial cells. Atherosclerosis. 1993 Jul;101(2):177–184. doi: 10.1016/0021-9150(93)90114-a. [DOI] [PubMed] [Google Scholar]
  38. Wagner R. W. The state of the art in antisense research. Nat Med. 1995 Nov;1(11):1116–1118. doi: 10.1038/nm1195-1116. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES