Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Sep 1;25(17):3415–3420. doi: 10.1093/nar/25.17.3415

Precise assessment of microsatellite instability using high resolution fluorescent microsatellite analysis.

S Oda 1, E Oki 1, Y Maehara 1, K Sugimachi 1
PMCID: PMC146902  PMID: 9254697

Abstract

The instability of microsatellite sequences dispersed in the genome has been linked to a deficiency in cellular mismatch repair. This phenotype has been frequently observed in various human neoplasms and is regarded as a major factor in tumorigenesis. To demonstrate alterations in microsatellite sequences, polymerase chain reaction (PCR) and electrophoretic analysis are techniques often used. However, the electrophoretic profiles of PCR-amplified microsatellite sequences have not been well characterized. Moreover, the conventional method using autoradiography has critical problems in detection characteristics and migration accuracy. We made use of fluorescence-labeled PCR and laser scanning with linear detection characteristics, so as to detect bands quantitatively. Next, we characterized Taq polymerase-dependent modification of the amplified microsatellite sequences, using artificially synthesized microsatellite alleles and we optimized the electrophoretic profiles by enzymatic modification with T4 DNA polymerase. We developed a dual fluorescence co-electrophoresis system, in which both samples derived from cancer and normal tissues are electrophoresed in the same lane, in order to minimize migration errors. These improvements remarkably facilitate precise and objective assessments of microsatellite instability. Analyzing many positive cases in cell lines and tissue specimens, we classified all the patterns of microsatellite alteration and set up new criteria for assessing microsatellite instability.

Full Text

The Full Text of this article is available as a PDF (177.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Au K. G., Welsh K., Modrich P. Initiation of methyl-directed mismatch repair. J Biol Chem. 1992 Jun 15;267(17):12142–12148. [PubMed] [Google Scholar]
  2. Brownstein M. J., Carpten J. D., Smith J. R. Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques. 1996 Jun;20(6):1004-6, 1008-10. doi: 10.2144/96206st01. [DOI] [PubMed] [Google Scholar]
  3. Canzian F., Salovaara R., Hemminki A., Kristo P., Chadwick R. B., Aaltonen L. A., de la Chapelle A. Semiautomated assessment of loss of heterozygosity and replication error in tumors. Cancer Res. 1996 Jul 15;56(14):3331–3337. [PubMed] [Google Scholar]
  4. Cawkwell L., Li D., Lewis F. A., Martin I., Dixon M. F., Quirke P. Microsatellite instability in colorectal cancer: improved assessment using fluorescent polymerase chain reaction. Gastroenterology. 1995 Aug;109(2):465–471. doi: 10.1016/0016-5085(95)90334-8. [DOI] [PubMed] [Google Scholar]
  5. Fishel R., Lescoe M. K., Rao M. R., Copeland N. G., Jenkins N. A., Garber J., Kane M., Kolodner R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993 Dec 3;75(5):1027–1038. doi: 10.1016/0092-8674(93)90546-3. [DOI] [PubMed] [Google Scholar]
  6. Ginot F., Bordelais I., Nguyen S., Gyapay G. Correction of some genotyping errors in automated fluorescent microsatellite analysis by enzymatic removal of one base overhangs. Nucleic Acids Res. 1996 Feb 1;24(3):540–541. doi: 10.1093/nar/24.3.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Han H. J., Maruyama M., Baba S., Park J. G., Nakamura Y. Genomic structure of human mismatch repair gene, hMLH1, and its mutation analysis in patients with hereditary non-polyposis colorectal cancer (HNPCC) Hum Mol Genet. 1995 Feb;4(2):237–242. doi: 10.1093/hmg/4.2.237. [DOI] [PubMed] [Google Scholar]
  8. Horii A., Han H. J., Shimada M., Yanagisawa A., Kato Y., Ohta H., Yasui W., Tahara E., Nakamura Y. Frequent replication errors at microsatellite loci in tumors of patients with multiple primary cancers. Cancer Res. 1994 Jul 1;54(13):3373–3375. [PubMed] [Google Scholar]
  9. Hu G. DNA polymerase-catalyzed addition of nontemplated extra nucleotides to the 3' end of a DNA fragment. DNA Cell Biol. 1993 Oct;12(8):763–770. doi: 10.1089/dna.1993.12.763. [DOI] [PubMed] [Google Scholar]
  10. Larson A. A., Kern S., Sommers R. L., Yokota J., Cavenee W. K., Hampton G. M. Analysis of replication error (RER+) phenotypes in cervical carcinoma. Cancer Res. 1996 Mar 15;56(6):1426–1431. [PubMed] [Google Scholar]
  11. Leach F. S., Nicolaides N. C., Papadopoulos N., Liu B., Jen J., Parsons R., Peltomäki P., Sistonen P., Aaltonen L. A., Nyström-Lahti M. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 1993 Dec 17;75(6):1215–1225. doi: 10.1016/0092-8674(93)90330-s. [DOI] [PubMed] [Google Scholar]
  12. Litt M., Hauge X., Sharma V. Shadow bands seen when typing polymorphic dinucleotide repeats: some causes and cures. Biotechniques. 1993 Aug;15(2):280–284. [PubMed] [Google Scholar]
  13. Modrich P. Mismatch repair, genetic stability, and cancer. Science. 1994 Dec 23;266(5193):1959–1960. doi: 10.1126/science.7801122. [DOI] [PubMed] [Google Scholar]
  14. Risinger J. I., Berchuck A., Kohler M. F., Watson P., Lynch H. T., Boyd J. Genetic instability of microsatellites in endometrial carcinoma. Cancer Res. 1993 Nov 1;53(21):5100–5103. [PubMed] [Google Scholar]
  15. Shibata D., Peinado M. A., Ionov Y., Malkhosyan S., Perucho M. Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nat Genet. 1994 Mar;6(3):273–281. doi: 10.1038/ng0394-273. [DOI] [PubMed] [Google Scholar]
  16. Thibodeau S. N., Bren G., Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993 May 7;260(5109):816–819. doi: 10.1126/science.8484122. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES