Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Sep 1;25(17):3421–3427. doi: 10.1093/nar/25.17.3421

Evidence for a hydroxide ion bridging two magnesium ions at the active site of the hammerhead ribozyme.

T Hermann 1, P Auffinger 1, W G Scott 1, E Westhof 1
PMCID: PMC146905  PMID: 9254698

Abstract

In the presence of magnesium ions, cleavage by the hammerhead ribozyme RNA at a specific residue leads to 2'3'-cyclic phosphate and 5'-OH extremities. In the cleavage reaction an activated ribose 2'-hydroxyl group attacks its attached 3'-phosphate. Molecular dynamics simulations of the crystal structure of the hammerhead ribozyme, obtained after flash-freezing of crystals under conditions where the ribozyme is active, provide evidence that a mu-bridging OH-ion is located between two Mg2+ions close to the cleavable phosphate. Constrained simulations show further that a flip from the C3'- endo to the C2'- endo conformation of the ribose at the cleavable phosphate brings the 2'-hydroxyl in proximity to both the attacked phosphorous atom and the mu-bridging OH-ion. Thus, the simulations lead to a detailed new insight into the mechanism of hammerhead ribozyme cleavage where a mu-hydroxo bridged magnesium cluster, located on the deep groove side, provides an OH-ion that is able to activate the 2'-hydroxyl nucleophile after a minor and localized conformational change in the RNA.

Full Text

The Full Text of this article is available as a PDF (1,009.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auffinger P., Louise-May S., Westhof E. Hydration of C-H groups in tRNA. Faraday Discuss. 1996;(103):151–173. doi: 10.1039/fd9960300151. [DOI] [PubMed] [Google Scholar]
  2. Auffinger P., Westhof E. H-bond stability in the tRNA(Asp) anticodon hairpin: 3 ns of multiple molecular dynamics simulations. Biophys J. 1996 Aug;71(2):940–954. doi: 10.1016/S0006-3495(96)79298-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baykov A. A., Alexandrov A. P., Smirnova I. N. A two-step mechanism of fluoride inhibition of rat liver inorganic pyrophosphatase. Arch Biochem Biophys. 1992 Apr;294(1):238–243. doi: 10.1016/0003-9861(92)90163-q. [DOI] [PubMed] [Google Scholar]
  4. Beese L. S., Steitz T. A. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 1991 Jan;10(1):25–33. doi: 10.1002/j.1460-2075.1991.tb07917.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Birikh K. R., Heaton P. A., Eckstein F. The structure, function and application of the hammerhead ribozyme. Eur J Biochem. 1997 Apr 1;245(1):1–16. doi: 10.1111/j.1432-1033.1997.t01-3-00001.x. [DOI] [PubMed] [Google Scholar]
  6. Dahm S. C., Derrick W. B., Uhlenbeck O. C. Evidence for the role of solvated metal hydroxide in the hammerhead cleavage mechanism. Biochemistry. 1993 Dec 7;32(48):13040–13045. doi: 10.1021/bi00211a013. [DOI] [PubMed] [Google Scholar]
  7. Delarue M., Poch O., Tordo N., Moras D., Argos P. An attempt to unify the structure of polymerases. Protein Eng. 1990 May;3(6):461–467. doi: 10.1093/protein/3.6.461. [DOI] [PubMed] [Google Scholar]
  8. Goldberg J., Huang H. B., Kwon Y. G., Greengard P., Nairn A. C., Kuriyan J. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature. 1995 Aug 31;376(6543):745–753. doi: 10.1038/376745a0. [DOI] [PubMed] [Google Scholar]
  9. Gorun S. M., Lippard S. J. A new synthetic approach to the ferritin core uncovers the soluble iron(III) oxo-hydroxo aggregate [Fe11O6(OH)6(O2CPh)15]. Nature. 1986 Feb 20;319(6055):666–668. doi: 10.1038/319666a0. [DOI] [PubMed] [Google Scholar]
  10. Larsen T. M., Wedekind J. E., Rayment I., Reed G. H. A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 A resolution. Biochemistry. 1996 Apr 9;35(14):4349–4358. doi: 10.1021/bi952859c. [DOI] [PubMed] [Google Scholar]
  11. Long D. M., LaRiviere F. J., Uhlenbeck O. C. Divalent metal ions and the internal equilibrium of the hammerhead ribozyme. Biochemistry. 1995 Nov 7;34(44):14435–14440. doi: 10.1021/bi00044a021. [DOI] [PubMed] [Google Scholar]
  12. McKay D. B. Structure and function of the hammerhead ribozyme: an unfinished story. RNA. 1996 May;2(5):395–403. [PMC free article] [PubMed] [Google Scholar]
  13. Mei H. Y., Kaaret T. W., Bruice T. C. A computational approach to the mechanism of self-cleavage of hammerhead RNA. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9727–9731. doi: 10.1073/pnas.86.24.9727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Partono S., Lewin A. S. The rate and specificity of a group I ribozyme are inversely affected by choice of monovalent salt. Nucleic Acids Res. 1991 Feb 11;19(3):605–609. doi: 10.1093/nar/19.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pelletier H., Sawaya M. R., Kumar A., Wilson S. H., Kraut J. Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science. 1994 Jun 24;264(5167):1891–1903. [PubMed] [Google Scholar]
  16. Pley H. W., Flaherty K. M., McKay D. B. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994 Nov 3;372(6501):68–74. doi: 10.1038/372068a0. [DOI] [PubMed] [Google Scholar]
  17. Pontius B. W., Lott W. B., von Hippel P. H. Observations on catalysis by hammerhead ribozymes are consistent with a two-divalent-metal-ion mechanism. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2290–2294. doi: 10.1073/pnas.94.6.2290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Salminen T., Käpylä J., Heikinheimo P., Kankare J., Goldman A., Heinonen J., Baykov A. A., Cooperman B. S., Lahti R. Structure and function analysis of Escherichia coli inorganic pyrophosphatase: is a hydroxide ion the key to catalysis? Biochemistry. 1995 Jan 24;34(3):782–791. doi: 10.1021/bi00003a011. [DOI] [PubMed] [Google Scholar]
  19. Scott W. G., Finch J. T., Klug A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell. 1995 Jun 30;81(7):991–1002. doi: 10.1016/s0092-8674(05)80004-2. [DOI] [PubMed] [Google Scholar]
  20. Scott W. G., Klug A. Ribozymes: structure and mechanism in RNA catalysis. Trends Biochem Sci. 1996 Jun;21(6):220–224. [PubMed] [Google Scholar]
  21. Scott W. G., Murray J. B., Arnold J. R., Stoddard B. L., Klug A. Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme. Science. 1996 Dec 20;274(5295):2065–2069. doi: 10.1126/science.274.5295.2065. [DOI] [PubMed] [Google Scholar]
  22. Setlik R. F., Shibata M., Sarma R. H., Sarma M. H., Kazim A. L., Ornstein R. L., Tomasi T. B., Rein R. Modeling of a possible conformational change associated with the catalytic mechanism in the hammerhead ribozyme. J Biomol Struct Dyn. 1995 Dec;13(3):515–522. doi: 10.1080/07391102.1995.10508861. [DOI] [PubMed] [Google Scholar]
  23. Sousa R. Structural and mechanistic relationships between nucleic acid polymerases. Trends Biochem Sci. 1996 May;21(5):186–190. [PubMed] [Google Scholar]
  24. Streicher B., Westhof E., Schroeder R. The environment of two metal ions surrounding the splice site of a group I intron. EMBO J. 1996 May 15;15(10):2556–2564. [PMC free article] [PubMed] [Google Scholar]
  25. Uhlenbeck O. C. A small catalytic oligoribonucleotide. Nature. 1987 Aug 13;328(6131):596–600. doi: 10.1038/328596a0. [DOI] [PubMed] [Google Scholar]
  26. Wilcox Dean E. Binuclear Metallohydrolases. Chem Rev. 1996 Nov 7;96(7):2435–2458. doi: 10.1021/cr950043b. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES