Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Sep 1;25(17):3532–3536. doi: 10.1093/nar/25.17.3532

Diversity among the primate eosinophil-derived neurotoxin genes: a specific C-terminal sequence is necessary for enhanced ribonuclease activity.

H F Rosenberg 1, K D Dyer 1
PMCID: PMC146920  PMID: 9254715

Abstract

The human eosinophil-derived neurotoxin (hEDN) is a secretory effector protein from eosinophilic leukocytes that is a member of the ribonuclease A (RNase A) family of ribonucleases. EDN is a rapidly evolving protein, accumulating non-silent mutations at a rate exceeding those of most other functional coding sequences studied in primates. Although all primate EDNs retain the structural and functional residues known to be prerequisites for ribonuclease activity, we have shown previously that recombinant EDN derived from a New World monkey sequence ( Saguinus oedipus ) had significantly less catalytic activity than the human (hEDN) ortholog.In this work, we have prepared recombinant proteins from EDN from sequences derived from orangutan (Pongo pygmaeus, oEDN) and Old World monkey (Macaca fascicularis, mcEDN) genomic DNAs, and from a second New World monkey sequence (Aotus trivirgatus, omEDN) as well. The catalytic efficiencies [ k cat/ K m (M-1s-1)] determined for both oEDN and mcEDN were similar to that determined previously for hEDN, while omEDN displayed approximately 100-fold less catalytic activity. The relative ribonuclease activities of hEDN/omEDN chimeras pointed to a C-terminal segment as crucial to the enhanced catalytic activity hEDN, and substitution of Arg 132-Ile 133 of hEDN with the Thr-Thr pair at the analogous position in omEDN resulted in an approximately 10-fold reduction in hEDN's catalytic efficiency. However, the reverse substitution, Arg-Ile for Thr-Thr in omEDN, did not enhance the catalytic efficiency of this relatively inactive protein. These results indicate that the Arg and/or Ile residues adjacent to the C-terminus are necessary (but not sufficient) for enhanced ribonuclease activity among the primate EDNs, and will permit prediction of the relative ribonuclease activities based on differences in primary structure.

Full Text

The Full Text of this article is available as a PDF (102.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker R. L., Loegering D. A., Ten R. M., Hamann K. J., Pease L. R., Gleich G. J. Eosinophil cationic protein cDNA. Comparison with other toxic cationic proteins and ribonucleases. J Immunol. 1989 Aug 1;143(3):952–955. [PubMed] [Google Scholar]
  2. Beintema J. J. Presence of a basic amino acid residue at either position 66 or 122 is a condition for enzymic activity in the ribonuclease superfamily. FEBS Lett. 1989 Aug 28;254(1-2):1–4. doi: 10.1016/0014-5793(89)80996-2. [DOI] [PubMed] [Google Scholar]
  3. Durack D. T., Ackerman S. J., Loegering D. A., Gleich G. J. Purification of human eosinophil-derived neurotoxin. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5165–5169. doi: 10.1073/pnas.78.8.5165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Durack D. T., Sumi S. M., Klebanoff S. J. Neurotoxicity of human eosinophils. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1443–1447. doi: 10.1073/pnas.76.3.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gullberg U., Widegren B., Arnason U., Egesten A., Olsson I. The cytotoxic eosinophil cationic protein (ECP) has ribonuclease activity. Biochem Biophys Res Commun. 1986 Sep 30;139(3):1239–1242. doi: 10.1016/s0006-291x(86)80310-2. [DOI] [PubMed] [Google Scholar]
  6. Iwama M., Kunihiro M., Ohgi K., Irie M. Purification and properties of human urine ribonucleases. J Biochem. 1981 Apr;89(4):1005–1016. [PubMed] [Google Scholar]
  7. Mosimann S. C., Newton D. L., Youle R. J., James M. N. X-ray crystallographic structure of recombinant eosinophil-derived neurotoxin at 1.83 A resolution. J Mol Biol. 1996 Jul 26;260(4):540–552. doi: 10.1006/jmbi.1996.0420. [DOI] [PubMed] [Google Scholar]
  8. Newton D. L., Walbridge S., Mikulski S. M., Ardelt W., Shogen K., Ackerman S. J., Rybak S. M., Youle R. J. Toxicity of an antitumor ribonuclease to Purkinje neurons. J Neurosci. 1994 Feb;14(2):538–544. doi: 10.1523/JNEUROSCI.14-02-00538.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Parés X., Nogués M. V., de Llorens R., Cuchillo C. M. Structure and function of ribonuclease A binding subsites. Essays Biochem. 1991;26:89–103. [PubMed] [Google Scholar]
  10. Rosenberg H. F., Dyer K. D. Eosinophil cationic protein and eosinophil-derived neurotoxin. Evolution of novel function in a primate ribonuclease gene family. J Biol Chem. 1995 Sep 15;270(37):21539–21544. doi: 10.1074/jbc.270.37.21539. [DOI] [PubMed] [Google Scholar]
  11. Rosenberg H. F., Dyer K. D. Molecular cloning and characterization of a novel human ribonuclease (RNase k6): increasing diversity in the enlarging ribonuclease gene family. Nucleic Acids Res. 1996 Sep 15;24(18):3507–3513. doi: 10.1093/nar/24.18.3507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rosenberg H. F., Dyer K. D., Tiffany H. L., Gonzalez M. Rapid evolution of a unique family of primate ribonuclease genes. Nat Genet. 1995 Jun;10(2):219–223. doi: 10.1038/ng0695-219. [DOI] [PubMed] [Google Scholar]
  13. Rosenberg H. F. Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity. J Biol Chem. 1995 Apr 7;270(14):7876–7881. doi: 10.1074/jbc.270.14.7876. [DOI] [PubMed] [Google Scholar]
  14. Rosenberg H. F., Tenen D. G., Ackerman S. J. Molecular cloning of the human eosinophil-derived neurotoxin: a member of the ribonuclease gene family. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4460–4464. doi: 10.1073/pnas.86.12.4460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shapiro R., Riordan J. F., Vallee B. L. Characteristic ribonucleolytic activity of human angiogenin. Biochemistry. 1986 Jun 17;25(12):3527–3532. doi: 10.1021/bi00360a008. [DOI] [PubMed] [Google Scholar]
  16. Sibley C. G., Ahlquist J. E. The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization. J Mol Evol. 1984;20(1):2–15. doi: 10.1007/BF02101980. [DOI] [PubMed] [Google Scholar]
  17. Slifman N. R., Loegering D. A., McKean D. J., Gleich G. J. Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein. J Immunol. 1986 Nov 1;137(9):2913–2917. [PubMed] [Google Scholar]
  18. Sorrentino S., Glitz D. G., Hamann K. J., Loegering D. A., Checkel J. L., Gleich G. J. Eosinophil-derived neurotoxin and human liver ribonuclease. Identity of structure and linkage of neurotoxicity to nuclease activity. J Biol Chem. 1992 Jul 25;267(21):14859–14865. [PubMed] [Google Scholar]
  19. St Clair D. K., Rybak S. M., Riordan J. F., Vallee B. L. Angiogenin abolishes cell-free protein synthesis by specific ribonucleolytic inactivation of ribosomes. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8330–8334. doi: 10.1073/pnas.84.23.8330. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES