Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Sep 1;25(17):3514–3522. doi: 10.1093/nar/25.17.3514

ESSA: an integrated and interactive computer tool for analysing RNA secondary structure.

F Chetouani 1, P Monestié 1, P Thébault 1, C Gaspin 1, B Michot 1
PMCID: PMC146922  PMID: 9254713

Abstract

With ESSA, we propose an approach of RNA secondary structure analysis based on extensive viewing within a friendly graphical interface. This computer program is organized around the display of folding models produced by two complementary methods suitable to draw long RNA molecules. Any feature of interest can be managed directly on the display and highlighted by a rich combination of colours and symbols with emphasis given to structural probe accessibilities. ESSA also includes a word searching procedure allowing easy visual identification of structural features even complex and degenerated. Analysis functions make it possible to calculate the thermodynamic stability of any part of a folding using several models and compare homologous aligned RNA both in primary and secondary structure. The predictive capacities of ESSA which brings together the experimental, thermodynamic and comparative methods, are increased by coupling it with a program dedicated to RNA folding prediction based on constraints management and propagation. The potentialities of ESSA are illustrated by the identification of a possible tertiary motif in the LSU rRNA and the visualization of a pseudoknot in S15 mRNA.

Full Text

The Full Text of this article is available as a PDF (482.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antao V. P., Tinoco I., Jr Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. Nucleic Acids Res. 1992 Feb 25;20(4):819–824. doi: 10.1093/nar/20.4.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Billoud B., Kontic M., Viari A. Palingol: a declarative programming language to describe nucleic acids' secondary structures and to scan sequence database. Nucleic Acids Res. 1996 Apr 15;24(8):1395–1403. doi: 10.1093/nar/24.8.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Szewczak A. A., Kundrot C. E., Cech T. R., Doudna J. A. RNA tertiary structure mediation by adenosine platforms. Science. 1996 Sep 20;273(5282):1696–1699. doi: 10.1126/science.273.5282.1696. [DOI] [PubMed] [Google Scholar]
  4. Cavaillé J., Nicoloso M., Bachellerie J. P. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature. 1996 Oct 24;383(6602):732–735. doi: 10.1038/383732a0. [DOI] [PubMed] [Google Scholar]
  5. Chevalet C., Michot B. An algorithm for comparing RNA secondary structures and searching for similar substructures. Comput Appl Biosci. 1992 Jun;8(3):215–225. doi: 10.1093/bioinformatics/8.3.215. [DOI] [PubMed] [Google Scholar]
  6. Chiu D. K., Kolodziejczak T. Inferring consensus structure from nucleic acid sequences. Comput Appl Biosci. 1991 Jul;7(3):347–352. doi: 10.1093/bioinformatics/7.3.347. [DOI] [PubMed] [Google Scholar]
  7. Corpet F., Michot B. RNAlign program: alignment of RNA sequences using both primary and secondary structures. Comput Appl Biosci. 1994 Jul;10(4):389–399. doi: 10.1093/bioinformatics/10.4.389. [DOI] [PubMed] [Google Scholar]
  8. Costa M., Déme E., Jacquier A., Michel F. Multiple tertiary interactions involving domain II of group II self-splicing introns. J Mol Biol. 1997 Apr 4;267(3):520–536. doi: 10.1006/jmbi.1996.0882. [DOI] [PubMed] [Google Scholar]
  9. Costa M., Michel F. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 1995 Mar 15;14(6):1276–1285. doi: 10.1002/j.1460-2075.1995.tb07111.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Costa M., Michel F. Rules for RNA recognition of GNRA tetraloops deduced by in vitro selection: comparison with in vivo evolution. EMBO J. 1997 Jun 2;16(11):3289–3302. doi: 10.1093/emboj/16.11.3289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dandekar T., Hentze M. W. Finding the hairpin in the haystack: searching for RNA motifs. Trends Genet. 1995 Feb;11(2):45–50. doi: 10.1016/s0168-9525(00)88996-9. [DOI] [PubMed] [Google Scholar]
  12. De Rijk P., Van de Peer Y., De Wachter R. Database on the structure of large ribosomal subunit RNA. Nucleic Acids Res. 1997 Jan 1;25(1):117–122. doi: 10.1093/nar/25.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Egebjerg J., Christiansen J., Garrett R. A. Attachment sites of primary binding proteins L1, L2 and L23 on 23 S ribosomal RNA of Escherichia coli. J Mol Biol. 1991 Nov 20;222(2):251–264. doi: 10.1016/0022-2836(91)90210-w. [DOI] [PubMed] [Google Scholar]
  15. Gaspin C., Westhof E. An interactive framework for RNA secondary structure prediction with a dynamical treatment of constraints. J Mol Biol. 1995 Nov 24;254(2):163–174. doi: 10.1006/jmbi.1995.0608. [DOI] [PubMed] [Google Scholar]
  16. Gautheret D., Damberger S. H., Gutell R. R. Identification of base-triples in RNA using comparative sequence analysis. J Mol Biol. 1995 Apr 21;248(1):27–43. doi: 10.1006/jmbi.1995.0200. [DOI] [PubMed] [Google Scholar]
  17. Gutell R. R., Power A., Hertz G. Z., Putz E. J., Stormo G. D. Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Res. 1992 Nov 11;20(21):5785–5795. doi: 10.1093/nar/20.21.5785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hassouna N., Michot B., Bachellerie J. P. The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res. 1984 Apr 25;12(8):3563–3583. doi: 10.1093/nar/12.8.3563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jaeger J. A., Turner D. H., Zuker M. Predicting optimal and suboptimal secondary structure for RNA. Methods Enzymol. 1990;183:281–306. doi: 10.1016/0076-6879(90)83019-6. [DOI] [PubMed] [Google Scholar]
  20. Kiss-László Z., Henry Y., Bachellerie J. P., Caizergues-Ferrer M., Kiss T. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell. 1996 Jun 28;85(7):1077–1088. doi: 10.1016/s0092-8674(00)81308-2. [DOI] [PubMed] [Google Scholar]
  21. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. The RDP (Ribosomal Database Project). Nucleic Acids Res. 1997 Jan 1;25(1):109–111. doi: 10.1093/nar/25.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Major F., Turcotte M., Gautheret D., Lapalme G., Fillion E., Cedergren R. The combination of symbolic and numerical computation for three-dimensional modeling of RNA. Science. 1991 Sep 13;253(5025):1255–1260. doi: 10.1126/science.1716375. [DOI] [PubMed] [Google Scholar]
  23. Matzura O., Wennborg A. RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput Appl Biosci. 1996 Jun;12(3):247–249. doi: 10.1093/bioinformatics/12.3.247. [DOI] [PubMed] [Google Scholar]
  24. McCaskill J. S. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers. 1990 May-Jun;29(6-7):1105–1119. doi: 10.1002/bip.360290621. [DOI] [PubMed] [Google Scholar]
  25. Muller G., Gaspin C., Etienne A., Westhof E. Automatic display of RNA secondary structures. Comput Appl Biosci. 1993 Oct;9(5):551–561. doi: 10.1093/bioinformatics/9.5.551. [DOI] [PubMed] [Google Scholar]
  26. Nicoloso M., Qu L. H., Michot B., Bachellerie J. P. Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2'-O-ribose methylation of rRNAs. J Mol Biol. 1996 Jul 12;260(2):178–195. doi: 10.1006/jmbi.1996.0391. [DOI] [PubMed] [Google Scholar]
  27. Perochon-Dorisse J., Chetouani F., Aurel S., Iscolo N., Michot B. RNA-d2: a computer program for editing and display of RNA secondary structures. Comput Appl Biosci. 1995 Feb;11(1):101–109. doi: 10.1093/bioinformatics/11.1.101. [DOI] [PubMed] [Google Scholar]
  28. Philippe C., Bénard L., Portier C., Westhof E., Ehresmann B., Ehresmann C. Molecular dissection of the pseudoknot governing the translational regulation of Escherichia coli ribosomal protein S15. Nucleic Acids Res. 1995 Jan 11;23(1):18–28. doi: 10.1093/nar/23.1.18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tanner M. A., Cech T. R. An important RNA tertiary interaction of group I and group II introns is implicated in gram-positive RNase P RNAs. RNA. 1995 Jun;1(4):349–350. [PMC free article] [PubMed] [Google Scholar]
  30. Turner D. H., Sugimoto N., Freier S. M. RNA structure prediction. Annu Rev Biophys Biophys Chem. 1988;17:167–192. doi: 10.1146/annurev.bb.17.060188.001123. [DOI] [PubMed] [Google Scholar]
  31. Vester B., Garrett R. A. Structure of a protein L23-RNA complex located at the A-site domain of the ribosomal peptidyl transferase centre. J Mol Biol. 1984 Nov 5;179(3):431–452. doi: 10.1016/0022-2836(84)90074-3. [DOI] [PubMed] [Google Scholar]
  32. Westhof E., Masquida B., Jaeger L. RNA tectonics: towards RNA design. Fold Des. 1996;1(4):R78–R88. doi: 10.1016/S1359-0278(96)00037-5. [DOI] [PubMed] [Google Scholar]
  33. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES