Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1996 Mar;104(3):290–297. doi: 10.1289/ehp.96104290

Particulate air pollution and respiratory disease in Anchorage, Alaska.

M E Gordian 1, H Ozkaynak 1, J Xue 1, S S Morris 1, J D Spengler 1
PMCID: PMC1469296  PMID: 8919767

Abstract

This paper examines the associations between average daily particulate matter less than 10 microns in diameter (PM10) and temperature with daily outpatient visits for respiratory disease including asthma, bronchitis, and upper respiratory illness in Anchorage, Alaska, where there are few industrial sources of air pollution. In Anchorage, PM10 is composed primarily of earth crustal material and volcanic ash. Carbon monoxide is measured only during the winter months. The number of outpatients visits for respiratory diagnoses during the period 1 May 1992 to 1 March 1994 were derived from medical insurance claims for state and municipal employees and their dependents covered by Aetna insurance. The data were filtered to reduce seasonal trends and serial autocorrelation and adjusted for day of the week. The results show that an increase of 10 micrograms/m3 in PM10 resulted in a 3-6% increase in visits for asthma and a 1-3% increase in visits for upper respiratory diseases. Winter CO concentrations were significantly associated with bronchitis and upper respiratory illness, but not with asthma. Winter CO was highly correlated with automobile exhaust emissions. These findings are consistent with the results of previous studies of particulate pollution in other urban areas and provide evidence that the coarse fraction of PM10 may affect the health of working people.

Full text

PDF
290

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dockery D. W., Pope C. A., 3rd Acute respiratory effects of particulate air pollution. Annu Rev Public Health. 1994;15:107–132. doi: 10.1146/annurev.pu.15.050194.000543. [DOI] [PubMed] [Google Scholar]
  2. Dockery D. W., Schwartz J., Spengler J. D. Air pollution and daily mortality: associations with particulates and acid aerosols. Environ Res. 1992 Dec;59(2):362–373. doi: 10.1016/s0013-9351(05)80042-8. [DOI] [PubMed] [Google Scholar]
  3. Hefflin B. J., Jalaludin B., McClure E., Cobb N., Johnson C. A., Jecha L., Etzel R. A. Surveillance for dust storms and respiratory diseases in Washington State, 1991. Arch Environ Health. 1994 May-Jun;49(3):170–174. doi: 10.1080/00039896.1994.9940378. [DOI] [PubMed] [Google Scholar]
  4. Kinney P. L., Ozkaynak H. Associations of daily mortality and air pollution in Los Angeles County. Environ Res. 1991 Apr;54(2):99–120. doi: 10.1016/s0013-9351(05)80094-5. [DOI] [PubMed] [Google Scholar]
  5. Morris R. D., Naumova E. N., Munasinghe R. L. Ambient air pollution and hospitalization for congestive heart failure among elderly people in seven large US cities. Am J Public Health. 1995 Oct;85(10):1361–1365. doi: 10.2105/ajph.85.10.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ozkaynak H., Thurston G. D. Associations between 1980 U.S. mortality rates and alternative measures of airborne particle concentration. Risk Anal. 1987 Dec;7(4):449–461. doi: 10.1111/j.1539-6924.1987.tb00482.x. [DOI] [PubMed] [Google Scholar]
  7. Pope C. A., 3rd, Dockery D. W. Acute health effects of PM10 pollution on symptomatic and asymptomatic children. Am Rev Respir Dis. 1992 May;145(5):1123–1128. doi: 10.1164/ajrccm/145.5.1123. [DOI] [PubMed] [Google Scholar]
  8. Pope C. A., 3rd, Dockery D. W., Spengler J. D., Raizenne M. E. Respiratory health and PM10 pollution. A daily time series analysis. Am Rev Respir Dis. 1991 Sep;144(3 Pt 1):668–674. doi: 10.1164/ajrccm/144.3_Pt_1.668. [DOI] [PubMed] [Google Scholar]
  9. Pope C. A., 3rd, Thun M. J., Namboodiri M. M., Dockery D. W., Evans J. S., Speizer F. E., Heath C. W., Jr Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respir Crit Care Med. 1995 Mar;151(3 Pt 1):669–674. doi: 10.1164/ajrccm/151.3_Pt_1.669. [DOI] [PubMed] [Google Scholar]
  10. Schwartz J. Air pollution and hospital admissions for the elderly in Birmingham, Alabama. Am J Epidemiol. 1994 Mar 15;139(6):589–598. doi: 10.1093/oxfordjournals.aje.a117048. [DOI] [PubMed] [Google Scholar]
  11. Schwartz J. Air pollution and hospital admissions for the elderly in Detroit, Michigan. Am J Respir Crit Care Med. 1994 Sep;150(3):648–655. doi: 10.1164/ajrccm.150.3.8087333. [DOI] [PubMed] [Google Scholar]
  12. Schwartz J. PM10, ozone, and hospital admissions for the elderly in Minneapolis-St. Paul, Minnesota. Arch Environ Health. 1994 Sep-Oct;49(5):366–374. doi: 10.1080/00039896.1994.9954989. [DOI] [PubMed] [Google Scholar]
  13. Schwartz J., Slater D., Larson T. V., Pierson W. E., Koenig J. Q. Particulate air pollution and hospital emergency room visits for asthma in Seattle. Am Rev Respir Dis. 1993 Apr;147(4):826–831. doi: 10.1164/ajrccm/147.4.826. [DOI] [PubMed] [Google Scholar]
  14. Ware J. H., Spengler J. D., Neas L. M., Samet J. M., Wagner G. R., Coultas D., Ozkaynak H., Schwab M. Respiratory and irritant health effects of ambient volatile organic compounds. The Kanawha County Health Study. Am J Epidemiol. 1993 Jun 15;137(12):1287–1301. doi: 10.1093/oxfordjournals.aje.a116639. [DOI] [PubMed] [Google Scholar]
  15. Xu X., Li B., Huang H. Air pollution and unscheduled hospital outpatient and emergency room visits. Environ Health Perspect. 1995 Mar;103(3):286–289. doi: 10.1289/ehp.95103286. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES