Abstract
Vaccinia DNA topoisomerase catalyzes the cleavage and re-joining of DNA strands through a DNA-(3'-phosphotyrosyl)-enzyme intermediate formed at a specific target sequence, 5'-(C/T)CCTT downward arrow. The 314 aa protein consists of three protease-resistant structural domains demarcated by protease-sensitive interdomain segments referred to as the bridge and the hinge. The bridge is defined by trypsin-accessible sites at Arg80, Lys83 and Arg84. Photocrosslinking and proteolytic footprinting experiments suggest that residues near the interdomain bridge interact with DNA. To assess the contributions of specific amino acids to DNA binding and transesterification chemistry, we introduced alanine substitutions at 16 positions within a 24 aa segment from residues 63 to 86(DSKGRRQYFYGKMHVQNRNAKRDR). Assays of the rates of DNA relaxation under conditions optimal for the wild-type topoisomerase revealed significant mutational effects at six positions; Arg67, Tyr70, Tyr72, Arg80, Arg84 and Asp85. The mutated proteins displayed normal or near-normal rates of single-turnover transesterification to DNA. The effects of amino acid substitutions on DNA binding were evinced by inhibition of covalent adduct formation in the presence of salt and magnesium. The mutant enzymes also displayed diminished affinity for a subset of cleavage sites in pUC19 DNA. Tyr70 and Tyr72 were subjected to further analysis by replacement with Phe, His, Gln and Arg. At both positions, the aromatic moiety was important for DNA binding.
Full Text
The Full Text of this article is available as a PDF (379.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cheng C., Wang L. K., Sekiguchi J., Shuman S. Mutational analysis of 39 residues of vaccinia DNA topoisomerase identifies Lys-220, Arg-223, and Asn-228 as important for covalent catalysis. J Biol Chem. 1997 Mar 28;272(13):8263–8269. doi: 10.1074/jbc.272.13.8263. [DOI] [PubMed] [Google Scholar]
- Gupta M., Fujimori A., Pommier Y. Eukaryotic DNA topoisomerases I. Biochim Biophys Acta. 1995 May 17;1262(1):1–14. doi: 10.1016/0167-4781(95)00029-g. [DOI] [PubMed] [Google Scholar]
- Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
- Jaxel C., Capranico G., Kerrigan D., Kohn K. W., Pommier Y. Effect of local DNA sequence on topoisomerase I cleavage in the presence or absence of camptothecin. J Biol Chem. 1991 Oct 25;266(30):20418–20423. [PubMed] [Google Scholar]
- Klemperer N., Lyttle D. J., Tauzin D., Traktman P., Robinson A. J. Identification and characterization of the orf virus type I topoisomerase. Virology. 1995 Jan 10;206(1):203–215. doi: 10.1016/s0042-6822(95)80035-2. [DOI] [PubMed] [Google Scholar]
- Klemperer N., Traktman P. Biochemical analysis of mutant alleles of the vaccinia virus topoisomerase I carrying targeted substitutions in a highly conserved domain. J Biol Chem. 1993 Jul 25;268(21):15887–15899. [PubMed] [Google Scholar]
- Morham S. G., Shuman S. Covalent and noncovalent DNA binding by mutants of vaccinia DNA topoisomerase I. J Biol Chem. 1992 Aug 5;267(22):15984–15992. [PubMed] [Google Scholar]
- Petersen B. O., Hall R. L., Moyer R. W., Shuman S. Characterization of a DNA topoisomerase encoded by Amsacta moore entomopoxvirus. Virology. 1997 Apr 14;230(2):197–206. doi: 10.1006/viro.1997.8495. [DOI] [PubMed] [Google Scholar]
- Petersen B. O., Shuman S. Histidine 265 is important for covalent catalysis by vaccinia topoisomerase and is conserved in all eukaryotic type I enzymes. J Biol Chem. 1997 Feb 14;272(7):3891–3896. doi: 10.1074/jbc.272.7.3891. [DOI] [PubMed] [Google Scholar]
- Petersen B. O., Wittschieben J., Shuman S. Mutations within a conserved region of vaccinia topoisomerase affect the DNA cleavage-religation equilibrium. J Mol Biol. 1996 Oct 25;263(2):181–195. doi: 10.1006/jmbi.1996.0568. [DOI] [PubMed] [Google Scholar]
- Sekiguchi J., Shuman S. Identification of contacts between topoisomerase I and its target DNA by site-specific photocrosslinking. EMBO J. 1996 Jul 1;15(13):3448–3457. [PMC free article] [PubMed] [Google Scholar]
- Sekiguchi J., Shuman S. Proteolytic footprinting of vaccinia topoisomerase bound to DNA. J Biol Chem. 1995 May 12;270(19):11636–11645. doi: 10.1074/jbc.270.19.11636. [DOI] [PubMed] [Google Scholar]
- Sekiguchi J., Shuman S. Stimulation of vaccinia topoisomerase I by nucleoside triphosphates. J Biol Chem. 1994 Nov 25;269(47):29760–29764. [PubMed] [Google Scholar]
- Sekiguchi J., Shuman S. Vaccinia topoisomerase binds circumferentially to DNA. J Biol Chem. 1994 Dec 16;269(50):31731–31734. [PubMed] [Google Scholar]
- Senkevich T. G., Bugert J. J., Sisler J. R., Koonin E. V., Darai G., Moss B. Genome sequence of a human tumorigenic poxvirus: prediction of specific host response-evasion genes. Science. 1996 Aug 9;273(5276):813–816. doi: 10.1126/science.273.5276.813. [DOI] [PubMed] [Google Scholar]
- Sharma A., Hanai R., Mondragón A. Crystal structure of the amino-terminal fragment of vaccinia virus DNA topoisomerase I at 1.6 A resolution. Structure. 1994 Aug 15;2(8):767–777. doi: 10.1016/s0969-2126(94)00077-8. [DOI] [PubMed] [Google Scholar]
- Shuman S., Golder M., Moss B. Characterization of vaccinia virus DNA topoisomerase I expressed in Escherichia coli. J Biol Chem. 1988 Nov 5;263(31):16401–16407. [PubMed] [Google Scholar]
- Shuman S., Kane E. M., Morham S. G. Mapping the active-site tyrosine of vaccinia virus DNA topoisomerase I. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9793–9797. doi: 10.1073/pnas.86.24.9793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shuman S., Moss B. Identification of a vaccinia virus gene encoding a type I DNA topoisomerase. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7478–7482. doi: 10.1073/pnas.84.21.7478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shuman S., Prescott J. Specific DNA cleavage and binding by vaccinia virus DNA topoisomerase I. J Biol Chem. 1990 Oct 15;265(29):17826–17836. [PubMed] [Google Scholar]
- Shuman S. Site-specific interaction of vaccinia virus topoisomerase I with duplex DNA. Minimal DNA substrate for strand cleavage in vitro. J Biol Chem. 1991 Jun 15;266(17):11372–11379. [PubMed] [Google Scholar]
- Shuman S., Turner J. Site-specific interaction of vaccinia virus topoisomerase I with base and sugar moieties in duplex DNA. J Biol Chem. 1993 Sep 5;268(25):18943–18950. [PubMed] [Google Scholar]
- Stivers J. T., Shuman S., Mildvan A. S. Vaccinia DNA topoisomerase I: single-turnover and steady-state kinetic analysis of the DNA strand cleavage and ligation reactions. Biochemistry. 1994 Jan 11;33(1):327–339. doi: 10.1021/bi00167a043. [DOI] [PubMed] [Google Scholar]
- Upton C., Opgenorth A., Traktman P., McFadden G. Identification and DNA sequence of the Shope fibroma virus DNA topoisomerase gene. Virology. 1990 Jun;176(2):439–447. doi: 10.1016/0042-6822(90)90013-h. [DOI] [PubMed] [Google Scholar]
- Wang J. C. DNA topoisomerases. Annu Rev Biochem. 1996;65:635–692. doi: 10.1146/annurev.bi.65.070196.003223. [DOI] [PubMed] [Google Scholar]
- Wang L. K., Shuman S. Deletions at the carboxyl terminus of vaccinia DNA topoisomerase affect DNA binding and enhance distributivity in DNA relaxation. Biochemistry. 1997 Apr 1;36(13):3909–3916. doi: 10.1021/bi962754p. [DOI] [PubMed] [Google Scholar]
- Wang L. K., Wittschieben J., Shuman S. Mutational analysis of 26 residues of vaccinia DNA topoisomerase identifies Ser-204 as important for DNA binding and cleavage. Biochemistry. 1997 Jul 1;36(26):7944–7950. doi: 10.1021/bi970498q. [DOI] [PubMed] [Google Scholar]
- Wittschieben J., Shuman S. Mechanism of DNA transesterification by vaccinia topoisomerase: catalytic contributions of essential residues Arg-130, Gly-132, Tyr-136 and Lys-167. Nucleic Acids Res. 1997 Aug 1;25(15):3001–3008. doi: 10.1093/nar/25.15.3001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wittschieben J., Shuman S. Mutational analysis of vaccinia DNA topoisomerase defines amino acid residues essential for covalent catalysis. J Biol Chem. 1994 Nov 25;269(47):29978–29983. [PubMed] [Google Scholar]
- Zantinge J. L., Krell P. J., Derbyshire J. B., Nagy E. Partial transcriptional mapping of the fowlpox virus genome and analysis of the EcoRI L fragment. J Gen Virol. 1996 Apr;77(Pt 4):603–614. doi: 10.1099/0022-1317-77-4-603. [DOI] [PubMed] [Google Scholar]