Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1996 Oct;104(10):1108–1113. doi: 10.1289/ehp.961041108

The tar fraction of cigarette smoke does not promote arteriosclerotic plaque development.

A Penn 1, K Keller 1, C Snyder 1, A Nadas 1, L C Chen 1
PMCID: PMC1469496  PMID: 8930554

Abstract

In addition to being the single greatest known environmental cause of cancer, cigarette smoke (CS) is also a major contributor to heart disease. We reported previously that 1) inhalation of either mainstream or sidestream CS promotes aortic arteriosclerotic plaque development; 2) 1,3 butadiene, a vapor-phase component of CS, promotes plaque development at 20 ppm, which at the time was only 2 times higher than the threshold limit value; and 3) individual tar fraction carcinogens in CS, including polynuclear aromatic hydrocarbons (PAHs) and nitrosamines, either do not promote plaque development or do so only at high concentrations. These results suggested that the tar fraction is not the primary source of plaque-promoting agents in CS. We asked whether repeated exposure to the tar fraction of CS, collected in a cold trap (TAR), promotes plaque development in an avian model of arteriosclerosis. Acetone extracts of mainstream CS tar from burning, unfiltered reference cigarettes were solubilized in dimethyl sulfoxide (DMSO) and injected weekly into cockerels for 16 weeks (25 mg/kg/week). Positive controls were injected weekly with the synthetic PAH carcinogen, 7,12 dimethylbenz(a)anthracene (DMBA) dissolved in DMSO and negative controls were injected with DMSO. Plaque location and prevalence did not differ from group to group. Morphometric analysis of plaque cross-sectional areas showed that plaque sizes, which are log-normally distributed, were significantly larger in the DMBA cockerels compared to both the TAR and DMSO groups. There were no significant differences in plaque size between DMSO and TAR cockerels. The results reported here, combined with other recent findings, support the conclusion that the primary arteriosclerotic plaque-promoting components of CS are in the vapor phase.

Full text

PDF
1108

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allred E. N., Bleecker E. R., Chaitman B. R., Dahms T. E., Gottlieb S. O., Hackney J. D., Pagano M., Selvester R. H., Walden S. M., Warren J. Short-term effects of carbon monoxide exposure on the exercise performance of subjects with coronary artery disease. N Engl J Med. 1989 Nov 23;321(21):1426–1432. doi: 10.1056/NEJM198911233212102. [DOI] [PubMed] [Google Scholar]
  2. Belinsky S. A., Devereux T. R., Maronpot R. R., Stoner G. D., Anderson M. W. Relationship between the formation of promutagenic adducts and the activation of the K-ras protooncogene in lung tumors from A/J mice treated with nitrosamines. Cancer Res. 1989 Oct 1;49(19):5305–5311. [PubMed] [Google Scholar]
  3. Belinsky S. A., Walker V. E., Maronpot R. R., Swenberg J. A., Anderson M. W. Molecular dosimetry of DNA adduct formation and cell toxicity in rat nasal mucosa following exposure to the tobacco specific nitrosamine 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone and their relationship to induction of neoplasia. Cancer Res. 1987 Nov 15;47(22):6058–6065. [PubMed] [Google Scholar]
  4. Bond J. A., Kocan R. M., Benditt E. P., Juchau M. R. Metabolism of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene in cultured human fetal aortic smooth muscle cells. Life Sci. 1979 Jul 30;25(5):425–430. doi: 10.1016/0024-3205(79)90574-5. [DOI] [PubMed] [Google Scholar]
  5. Bond J. A., Omiecinski C. J., Juchau M. R. Kinetics, activation, and induction of aortic mono-oxygenases--biotransformation of benzo[a]pyrene. Biochem Pharmacol. 1979;28(2):305–311. doi: 10.1016/0006-2952(79)90520-3. [DOI] [PubMed] [Google Scholar]
  6. GELLHORN A. The cocarcinogenic activity of cigarette tobacco tar. Cancer Res. 1958 Jun;18(5):510–517. [PubMed] [Google Scholar]
  7. Glantz S. A., Parmley W. W. Passive smoking and heart disease. Epidemiology, physiology, and biochemistry. Circulation. 1991 Jan;83(1):1–12. doi: 10.1161/01.cir.83.1.1. [DOI] [PubMed] [Google Scholar]
  8. Hecht S. S., Chen C. B., Ohmori T., Hoffmann D. Comparative carcinogenicity in F344 rats of the tobacco-specific nitrosamines, N'-nitrosonornicotine and 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res. 1980 Feb;40(2):298–302. [PubMed] [Google Scholar]
  9. Hecht S. S., Hoffmann D. Tobacco-specific nitrosamines, an important group of carcinogens in tobacco and tobacco smoke. Carcinogenesis. 1988 Jun;9(6):875–884. doi: 10.1093/carcin/9.6.875. [DOI] [PubMed] [Google Scholar]
  10. Hecht S. S., Trushin N., Castonguay A., Rivenson A. Comparative tumorigenicity and DNA methylation in F344 rats by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and N-nitrosodimethylamine. Cancer Res. 1986 Feb;46(2):498–502. [PubMed] [Google Scholar]
  11. Klein-Szanto A. J., Iizasa T., Momiki S., Garcia-Palazzo I., Caamano J., Metcalf R., Welsh J., Harris C. C. A tobacco-specific N-nitrosamine or cigarette smoke condensate causes neoplastic transformation of xenotransplanted human bronchial epithelial cells. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6693–6697. doi: 10.1073/pnas.89.15.6693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Majesky M. W., Yang H. Y., Benditt E. P., Juchau M. R. Carcinogenesis and atherogenesis: differences in monooxygenase inducibility and bioactivation of benzo[a]pyrene in aortic and hepatic tissues of atherosclerosis-susceptible versus resistant pigeons. Carcinogenesis. 1983;4(6):647–652. doi: 10.1093/carcin/4.6.647. [DOI] [PubMed] [Google Scholar]
  13. Moss N. S., Benditt E. P. The ultrastructure of spontaneous and experimentally induced arterial lesions. II. The spontaneous plaque in the chicken. Lab Invest. 1970 Sep;23(3):231–245. [PubMed] [Google Scholar]
  14. ORRIS L., VAN DUUREN B. L., KOSAK A. I., NELSON N., SCHMITT F. L. The carcinogenicity for mouse skin and the aromatic hydrocarbon content of cigarette-smoke condensates. J Natl Cancer Inst. 1958 Sep;21(3):557–561. [PubMed] [Google Scholar]
  15. Penn A. L., Batastini G. G., Albert R. E. Age-dependent changes in prevalence, size and proliferation of arterial lesions in cockerels. I. Spontaneous lesions. Artery. 1980;7(6):448–463. [PubMed] [Google Scholar]
  16. Penn A. L., Batastini G. G., Albert R. E. Age-dependent changes in prevalence, size and proliferation of arterial lesions in cockerels. II. Carcinogen-associated lesions. Artery. 1981;9(5):382–393. [PubMed] [Google Scholar]
  17. Penn A., Batastini G., Soloman J., Burns F., Albert R. Dose-dependent size increases of aortic lesions following chronic exposure to 7,12-dimethylbenz(a)anthracene. Cancer Res. 1981 Feb;41(2):588–592. [PubMed] [Google Scholar]
  18. Penn A., Butler J., Snyder C., Albert R. E. Cigarette smoke and carbon monoxide do not have equivalent effects upon development of arteriosclerotic lesions. Artery. 1983;12(2):117–131. [PubMed] [Google Scholar]
  19. Penn A., Chen L. C., Snyder C. A. Inhalation of steady-state sidestream smoke from one cigarette promotes arteriosclerotic plaque development. Circulation. 1994 Sep;90(3):1363–1367. doi: 10.1161/01.cir.90.3.1363. [DOI] [PubMed] [Google Scholar]
  20. Penn A., Currie J., Snyder C. Inhalation of carbon monoxide does not accelerate arteriosclerosis in cockerels. Eur J Pharmacol. 1992 Sep 1;228(2-3):155–164. doi: 10.1016/0926-6917(92)90025-8. [DOI] [PubMed] [Google Scholar]
  21. Penn A., Snyder C. A. 1,3 Butadiene, a vapor phase component of environmental tobacco smoke, accelerates arteriosclerotic plaque development. Circulation. 1996 Feb 1;93(3):552–557. doi: 10.1161/01.cir.93.3.552. [DOI] [PubMed] [Google Scholar]
  22. Penn A., Snyder C. A. Inhalation of sidestream cigarette smoke accelerates development of arteriosclerotic plaques. Circulation. 1993 Oct;88(4 Pt 1):1820–1825. doi: 10.1161/01.cir.88.4.1820. [DOI] [PubMed] [Google Scholar]
  23. Penn A., Snyder C. Arteriosclerotic plaque development is 'promoted' by polynuclear aromatic hydrocarbons. Carcinogenesis. 1988 Dec;9(12):2185–2189. doi: 10.1093/carcin/9.12.2185. [DOI] [PubMed] [Google Scholar]
  24. Rivenson A., Hoffmann D., Prokopczyk B., Amin S., Hecht S. S. Induction of lung and exocrine pancreas tumors in F344 rats by tobacco-specific and Areca-derived N-nitrosamines. Cancer Res. 1988 Dec 1;48(23):6912–6917. [PubMed] [Google Scholar]
  25. Ronai Z. A., Gradia S., Peterson L. A., Hecht S. S. G to A transitions and G to T transversions in codon 12 of the Ki-ras oncogene isolated from mouse lung tumors induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and related DNA methylating and pyridyloxobutylating agents. Carcinogenesis. 1993 Nov;14(11):2419–2422. doi: 10.1093/carcin/14.11.2419. [DOI] [PubMed] [Google Scholar]
  26. Santerre R. F., Wight T. N., Smith S. C., Brannigan D. Spontaneous atherosclerosis in pigeons. A model system for studying metabolic parameters associated with atherogenesis. Am J Pathol. 1972 Apr;67(1):1–22. [PMC free article] [PubMed] [Google Scholar]
  27. Scott R. F., Thomas W. A., Lee W. M., Reiner J. M., Florentin R. A. Distribution of intimal smooth muscle cell masses and their relationship to early atherosclerosis in the abdominal aortas of young swine. Atherosclerosis. 1979 Nov;34(3):291–301. doi: 10.1016/s0021-9150(79)80007-6. [DOI] [PubMed] [Google Scholar]
  28. Steenland K. Passive smoking and the risk of heart disease. JAMA. 1992 Jan 1;267(1):94–99. [PubMed] [Google Scholar]
  29. Stehbens W. E. Intimal proliferation and spontaneous lipid deposition in the cerebral arteies of sheep and steers. J Atheroscler Res. 1965 Nov-Dec;5(6):556–568. doi: 10.1016/s0368-1319(65)80032-1. [DOI] [PubMed] [Google Scholar]
  30. Taylor A. E., Johnson D. C., Kazemi H. Environmental tobacco smoke and cardiovascular disease. A position paper from the Council on Cardiopulmonary and Critical Care, American Heart Association. Circulation. 1992 Aug;86(2):699–702. doi: 10.1161/01.cir.86.2.699. [DOI] [PubMed] [Google Scholar]
  31. Thirman M. J., Albrecht J. H., Krueger M. A., Erickson R. R., Cherwitz D. L., Park S. S., Gelboin H. V., Holtzman J. L. Induction of cytochrome CYPIA1 and formation of toxic metabolites of benzo[a]pyrene by rat aorta: a possible role in atherogenesis. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5397–5401. doi: 10.1073/pnas.91.12.5397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Trichopoulos D., Mollo F., Tomatis L., Agapitos E., Delsedime L., Zavitsanos X., Kalandidi A., Katsouyanni K., Riboli E., Saracci R. Active and passive smoking and pathological indicators of lung cancer risk in an autopsy study. JAMA. 1992 Oct 7;268(13):1697–1701. [PubMed] [Google Scholar]
  33. Van Duuren B. L., Goldschmidt B. M. Cocarcinogenic and tumor-promoting agents in tobacco carcinogenesis. J Natl Cancer Inst. 1976 Jun;56(6):1237–1242. doi: 10.1093/jnci/56.6.1237. [DOI] [PubMed] [Google Scholar]
  34. WYNDER E. L., CORNFIELD J. Cancer of the lung in physicians. N Engl J Med. 1952 Mar 12;248(11):441–444. doi: 10.1056/NEJM195303122481101. [DOI] [PubMed] [Google Scholar]
  35. WYNDER E. L., GRAHAM E. A., CRONINGER A. B. Experimental production of carcinoma with cigarette tar. Cancer Res. 1953 Dec;13(12):855–864. [PubMed] [Google Scholar]
  36. WYNDER E. L., GRAHAM E. A., CRONINGER A. B. Experimental production of carcinoma with cigarette tar. Cancer Res. 1953 Dec;13(12):855–864. [PubMed] [Google Scholar]
  37. WYNDER E. L., GRAHAM E. A. Tobacco smoking as a possible etiologic factor in bronchiogenic carcinoma; a study of 684 proved cases. J Am Med Assoc. 1950 May 27;143(4):329–336. doi: 10.1001/jama.1950.02910390001001. [DOI] [PubMed] [Google Scholar]
  38. Witschi H., Oreffo V. I., Pinkerton K. E. Six-month exposure of strain A/J mice to cigarette sidestream smoke: cell kinetics and lung tumor data. Fundam Appl Toxicol. 1995 Jun;26(1):32–40. doi: 10.1006/faat.1995.1072. [DOI] [PubMed] [Google Scholar]
  39. Zhu B. Q., Sun Y. P., Sievers R. E., Isenberg W. M., Glantz S. A., Parmley W. W. Passive smoking increases experimental atherosclerosis in cholesterol-fed rabbits. J Am Coll Cardiol. 1993 Jan;21(1):225–232. doi: 10.1016/0735-1097(93)90741-i. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES