Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1996 Mar;104(Suppl 1):135–140. doi: 10.1289/ehp.96104s1135

The melatonin hypothesis: electric power and breast cancer.

R G Stevens 1, S Davis 1
PMCID: PMC1469562  PMID: 8722117

Abstract

Breast cancer is a disease of modern life. As societies industrialize, risk increases, yet it is unclear which of the myriad changes coming with industrialization drives this increase. One important hallmark of modern life is the pervasive use of electric power. Electric power produces light at night (LAN) and electric and magnetic fields (EMF), either or both of which may alter pineal function and its primary hormone melatonin, thereby, perhaps increasing the risk of breast cancer. This hypothesis, stated a decade ago, is now receiving considerable experimental and epidemiological attention. The circumstantial case for the hypothesis has three aspects: light effects on melatonin, EMF effects on melatonin, and melatonin effects on breast cancer. The strongest of these aspects is the effects of light on melatonin. It is clear that the normal nocturnal melatonin rise in humans can be suppressed by light of sufficient intensity. The evidence for an effect of melatonin on breast cancer in experimental animals is strong, but the evidence in humans is scant and difficult to gather. The weakest aspect of the circumstantial case is EMF effects on melatonin. Whereas a half dozen independent laboratories have published findings of suppression in animals, there are inconsistencies, and there are no published data on humans. The direct evidence bearing on the hypothesis is sparse but provocative. Two laboratories have published data showing substantial increases in chemically induced breast cancer in rats by a weak AC (alternating current) magnetic field. The epidemiological evidence is very limited but has offered some support as well. An effect of electric power on breast cancer would have profound implications, and this possibility deserves continued investigation.

Full text

PDF
135

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arendt J., Bojkowski C., Franey C., Wright J., Marks V. Immunoassay of 6-hydroxymelatonin sulfate in human plasma and urine: abolition of the urinary 24-hour rhythm with atenolol. J Clin Endocrinol Metab. 1985 Jun;60(6):1166–1173. doi: 10.1210/jcem-60-6-1166. [DOI] [PubMed] [Google Scholar]
  2. Bartsch C., Bartsch H., Fuchs U., Lippert T. H., Bellmann O., Gupta D. Stage-dependent depression of melatonin in patients with primary breast cancer. Correlation with prolactin, thyroid stimulating hormone, and steroid receptors. Cancer. 1989 Jul 15;64(2):426–433. doi: 10.1002/1097-0142(19890715)64:2<426::aid-cncr2820640215>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  3. Baum A., Mevissen M., Kamino K., Mohr U., Löscher W. A histopathological study on alterations in DMBA-induced mammary carcinogenesis in rats with 50 Hz, 100 muT magnetic field exposure. Carcinogenesis. 1995 Jan;16(1):119–125. doi: 10.1093/carcin/16.1.119. [DOI] [PubMed] [Google Scholar]
  4. Beniashvili D. S., Bilanishvili V. G., Menabde M. Z. Low-frequency electromagnetic radiation enhances the induction of rat mammary tumors by nitrosomethyl urea. Cancer Lett. 1991 Dec 9;61(1):75–79. doi: 10.1016/0304-3835(91)90079-w. [DOI] [PubMed] [Google Scholar]
  5. Blask D. E., Pelletier D. B., Hill S. M., Lemus-Wilson A., Grosso D. S., Wilson S. T., Wise M. E. Pineal melatonin inhibition of tumor promotion in the N-nitroso-N-methylurea model of mammary carcinogenesis: potential involvement of antiestrogenic mechanisms in vivo. J Cancer Res Clin Oncol. 1991;117(6):526–532. doi: 10.1007/BF01613283. [DOI] [PubMed] [Google Scholar]
  6. Brainard G. C., Lewy A. J., Menaker M., Fredrickson R. H., Miller L. S., Weleber R. G., Cassone V., Hudson D. Dose-response relationship between light irradiance and the suppression of plasma melatonin in human volunteers. Brain Res. 1988 Jun 28;454(1-2):212–218. doi: 10.1016/0006-8993(88)90820-7. [DOI] [PubMed] [Google Scholar]
  7. Davis D. L., Hoel D., Fox J., Lopez A. International trends in cancer mortality in France, West Germany, Italy, Japan, England and Wales, and the USA. Lancet. 1990 Aug 25;336(8713):474–481. doi: 10.1016/0140-6736(90)92020-i. [DOI] [PubMed] [Google Scholar]
  8. Demers P. A., Thomas D. B., Rosenblatt K. A., Jimenez L. M., McTiernan A., Stalsberg H., Stemhagen A., Thompson W. D., Curnen M. G., Satariano W. Occupational exposure to electromagnetic fields and breast cancer in men. Am J Epidemiol. 1991 Aug 15;134(4):340–347. doi: 10.1093/oxfordjournals.aje.a116095. [DOI] [PubMed] [Google Scholar]
  9. Guénel P., Raskmark P., Andersen J. B., Lynge E. Incidence of cancer in persons with occupational exposure to electromagnetic fields in Denmark. Br J Ind Med. 1993 Aug;50(8):758–764. doi: 10.1136/oem.50.8.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hahn R. A. Profound bilateral blindness and the incidence of breast cancer. Epidemiology. 1991 May;2(3):208–210. doi: 10.1097/00001648-199105000-00008. [DOI] [PubMed] [Google Scholar]
  11. Kato M., Honma K., Shigemitsu T., Shiga Y. Effects of exposure to a circularly polarized 50-Hz magnetic field on plasma and pineal melatonin levels in rats. Bioelectromagnetics. 1993;14(2):97–106. doi: 10.1002/bem.2250140203. [DOI] [PubMed] [Google Scholar]
  12. Kaune W. T., Stevens R. G., Callahan N. J., Severson R. K., Thomas D. B. Residential magnetic and electric fields. Bioelectromagnetics. 1987;8(4):315–335. doi: 10.1002/bem.2250080402. [DOI] [PubMed] [Google Scholar]
  13. Krieger N., Wolff M. S., Hiatt R. A., Rivera M., Vogelman J., Orentreich N. Breast cancer and serum organochlorines: a prospective study among white, black, and Asian women. J Natl Cancer Inst. 1994 Apr 20;86(8):589–599. doi: 10.1093/jnci/86.8.589. [DOI] [PubMed] [Google Scholar]
  14. Lee J. M., Jr, Stormshak F., Thompson J. M., Thinesen P., Painter L. J., Olenchek E. G., Hess D. L., Forbes R., Foster D. L. Melatonin secretion and puberty in female lambs exposed to environmental electric and magnetic fields. Biol Reprod. 1993 Oct;49(4):857–864. doi: 10.1095/biolreprod49.4.857. [DOI] [PubMed] [Google Scholar]
  15. Lerchl A., Nonaka K. O., Reiter R. J. Pineal gland "magnetosensitivity" to static magnetic fields is a consequence of induced electric currents (eddy currents). J Pineal Res. 1991 Apr;10(3):109–116. doi: 10.1111/j.1600-079x.1991.tb00826.x. [DOI] [PubMed] [Google Scholar]
  16. Lewy A. J., Wehr T. A., Goodwin F. K., Newsome D. A., Markey S. P. Light suppresses melatonin secretion in humans. Science. 1980 Dec 12;210(4475):1267–1269. doi: 10.1126/science.7434030. [DOI] [PubMed] [Google Scholar]
  17. Liburdy R. P., Sloma T. R., Sokolic R., Yaswen P. ELF magnetic fields, breast cancer, and melatonin: 60 Hz fields block melatonin's oncostatic action on ER+ breast cancer cell proliferation. J Pineal Res. 1993 Mar;14(2):89–97. doi: 10.1111/j.1600-079x.1993.tb00491.x. [DOI] [PubMed] [Google Scholar]
  18. Lissoni P., Crispino S., Barni S., Sormani A., Brivio F., Pelizzoni F., Brenna A., Bratina G., Tancini G. Pineal gland and tumor cell kinetics: serum levels of melatonin in relation to Ki-67 labeling rate in breast cancer. Oncology. 1990;47(3):275–277. doi: 10.1159/000226831. [DOI] [PubMed] [Google Scholar]
  19. Loomis D. P., Savitz D. A., Ananth C. V. Breast cancer mortality among female electrical workers in the United States. J Natl Cancer Inst. 1994 Jun 15;86(12):921–925. doi: 10.1093/jnci/86.12.921. [DOI] [PubMed] [Google Scholar]
  20. Lynch H. J., Deng M. H., Wurtman R. J. Light intensities required to suppress nocturnal melatonin secretion in albino and pigmented rats. Life Sci. 1984 Aug 20;35(8):841–847. doi: 10.1016/0024-3205(84)90409-0. [DOI] [PubMed] [Google Scholar]
  21. Löscher W., Mevissen M. Animal studies on the role of 50/60-Hertz magnetic fields in carcinogenesis. Life Sci. 1994;54(21):1531–1543. doi: 10.1016/0024-3205(94)90024-8. [DOI] [PubMed] [Google Scholar]
  22. Löscher W., Mevissen M., Lehmacher W., Stamm A. Tumor promotion in a breast cancer model by exposure to a weak alternating magnetic field. Cancer Lett. 1993 Jul 30;71(1-3):75–81. doi: 10.1016/0304-3835(93)90100-n. [DOI] [PubMed] [Google Scholar]
  23. Löscher W., Mevissen M. Linear relationship between flux density and tumor co-promoting effect of prolonged magnetic field exposure in a breast cancer model. Cancer Lett. 1995 Sep 25;96(2):175–180. doi: 10.1016/0304-3835(95)03926-n. [DOI] [PubMed] [Google Scholar]
  24. Löscher W., Wahnschaffe U., Mevissen M., Lerchl A., Stamm A. Effects of weak alternating magnetic fields on nocturnal melatonin production and mammary carcinogenesis in rats. Oncology. 1994 May-Jun;51(3):288–295. doi: 10.1159/000227352. [DOI] [PubMed] [Google Scholar]
  25. Matanoski G. M., Breysse P. N., Elliott E. A. Electromagnetic field exposure and male breast cancer. Lancet. 1991 Mar 23;337(8743):737–737. doi: 10.1016/0140-6736(91)90325-j. [DOI] [PubMed] [Google Scholar]
  26. McIntyre I. M., Norman T. R., Burrows G. D., Armstrong S. M. Human melatonin suppression by light is intensity dependent. J Pineal Res. 1989;6(2):149–156. doi: 10.1111/j.1600-079x.1989.tb00412.x. [DOI] [PubMed] [Google Scholar]
  27. McIntyre I. M., Norman T. R., Burrows G. D., Armstrong S. M. Melatonin supersensitivity to dim light in seasonal affective disorder. Lancet. 1990 Feb 24;335(8687):488–488. doi: 10.1016/0140-6736(90)90732-k. [DOI] [PubMed] [Google Scholar]
  28. Mevissen M., Stamm A., Buntenkötter S., Zwingelberg R., Wahnschaffe U., Löscher W. Effects of magnetic fields on mammary tumor development induced by 7,12-dimethylbenz(a)anthracene in rats. Bioelectromagnetics. 1993;14(2):131–143. doi: 10.1002/bem.2250140206. [DOI] [PubMed] [Google Scholar]
  29. Mhatre M. C., Shah P. N., Juneja H. S. Effect of varying photoperiods on mammary morphology, DNA synthesis, and hormone profile in female rats. J Natl Cancer Inst. 1984 Jun;72(6):1411–1416. [PubMed] [Google Scholar]
  30. Micozzi M. S. Cross-cultural correlations of childhood growth and adult breast cancer. Am J Phys Anthropol. 1987 Aug;73(4):525–537. doi: 10.1002/ajpa.1330730415. [DOI] [PubMed] [Google Scholar]
  31. Morris M., Lack L., Barrett J. The effect of sleep/wake state on nocturnal melatonin excretion. J Pineal Res. 1990;9(2):133–138. doi: 10.1111/j.1600-079x.1990.tb00701.x. [DOI] [PubMed] [Google Scholar]
  32. Olcese J., Reuss S. Magnetic field effects on pineal gland melatonin synthesis: comparative studies on albino and pigmented rodents. Brain Res. 1986 Mar 26;369(1-2):365–368. doi: 10.1016/0006-8993(86)90552-4. [DOI] [PubMed] [Google Scholar]
  33. Paul M., Hammond S. K., Abdollahzadeh S. Power frequency magnetic field exposures among nurses in a neonatal intensive care unit and a normal newborn nursery. Bioelectromagnetics. 1994;15(6):519–529. doi: 10.1002/bem.2250150605. [DOI] [PubMed] [Google Scholar]
  34. Philo R., Berkowitz A. S. Inhibition of Dunning tumor growth by melatonin. J Urol. 1988 May;139(5):1099–1102. doi: 10.1016/s0022-5347(17)42795-9. [DOI] [PubMed] [Google Scholar]
  35. Reiter R. J. Action spectra, dose-response relationships, and temporal aspects of light's effects on the pineal gland. Ann N Y Acad Sci. 1985;453:215–230. doi: 10.1111/j.1749-6632.1985.tb11812.x. [DOI] [PubMed] [Google Scholar]
  36. Reiter R. J. Action spectra, dose-response relationships, and temporal aspects of light's effects on the pineal gland. Ann N Y Acad Sci. 1985;453:215–230. doi: 10.1111/j.1749-6632.1985.tb11812.x. [DOI] [PubMed] [Google Scholar]
  37. Reiter R. J., Anderson L. E., Buschbom R. L., Wilson B. W. Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth. Life Sci. 1988;42(22):2203–2206. doi: 10.1016/0024-3205(88)90371-2. [DOI] [PubMed] [Google Scholar]
  38. Safe S. H. Environmental and dietary estrogens and human health: is there a problem? Environ Health Perspect. 1995 Apr;103(4):346–351. doi: 10.1289/ehp.95103346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Semm P., Schneider T., Vollrath L. Effects of an earth-strength magnetic field on electrical activity of pineal cells. Nature. 1980 Dec 11;288(5791):607–608. doi: 10.1038/288607a0. [DOI] [PubMed] [Google Scholar]
  40. Shah P. N., Mhatre M. C., Kothari L. S. Effect of melatonin on mammary carcinogenesis in intact and pinealectomized rats in varying photoperiods. Cancer Res. 1984 Aug;44(8):3403–3407. [PubMed] [Google Scholar]
  41. Stehle J., Reuss S., Schröder H., Henschel M., Vollrath L. Magnetic field effects on pineal N-acetyltransferase activity and melatonin content in the gerbil--role of pigmentation and sex. Physiol Behav. 1988;44(1):91–94. doi: 10.1016/0031-9384(88)90350-2. [DOI] [PubMed] [Google Scholar]
  42. Stevens R. G. Biologically based epidemiological studies of electric power and cancer. Environ Health Perspect. 1993 Dec;101 (Suppl 4):93–100. doi: 10.1289/ehp.93101s493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stevens R. G., Davis S., Thomas D. B., Anderson L. E., Wilson B. W. Electric power, pineal function, and the risk of breast cancer. FASEB J. 1992 Feb 1;6(3):853–860. doi: 10.1096/fasebj.6.3.1740235. [DOI] [PubMed] [Google Scholar]
  44. Stevens R. G. Electric power use and breast cancer: a hypothesis. Am J Epidemiol. 1987 Apr;125(4):556–561. doi: 10.1093/oxfordjournals.aje.a114569. [DOI] [PubMed] [Google Scholar]
  45. Stevens R. G. Re: "Risk of premenopausal breast cancer and use of electric blankets". Am J Epidemiol. 1995 Aug 15;142(4):446–447. doi: 10.1093/oxfordjournals.aje.a117654. [DOI] [PubMed] [Google Scholar]
  46. Stevens R. G. Re: "Risk of premenopausal breast cancer and use of electric blankets". Am J Epidemiol. 1995 Aug 15;142(4):446–447. doi: 10.1093/oxfordjournals.aje.a117654. [DOI] [PubMed] [Google Scholar]
  47. Tamarkin L., Cohen M., Roselle D., Reichert C., Lippman M., Chabner B. Melatonin inhibition and pinealectomy enhancement of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in the rat. Cancer Res. 1981 Nov;41(11 Pt 1):4432–4436. [PubMed] [Google Scholar]
  48. Tamarkin L., Danforth D., Lichter A., DeMoss E., Cohen M., Chabner B., Lippman M. Decreased nocturnal plasma melatonin peak in patients with estrogen receptor positive breast cancer. Science. 1982 May 28;216(4549):1003–1005. doi: 10.1126/science.7079745. [DOI] [PubMed] [Google Scholar]
  49. Thériault G., Goldberg M., Miller A. B., Armstrong B., Guénel P., Deadman J., Imbernon E., To T., Chevalier A., Cyr D. Cancer risks associated with occupational exposure to magnetic fields among electric utility workers in Ontario and Quebec, Canada, and France: 1970-1989. Am J Epidemiol. 1994 Mar 15;139(6):550–572. doi: 10.1093/oxfordjournals.aje.a117046. [DOI] [PubMed] [Google Scholar]
  50. Tynes T., Andersen A. Electromagnetic fields and male breast cancer. Lancet. 1990 Dec 22;336(8730):1596–1596. doi: 10.1016/0140-6736(90)93387-5. [DOI] [PubMed] [Google Scholar]
  51. Ursin G., Bernstein L., Pike M. C. Breast cancer. Cancer Surv. 1994;19-20:241–264. [PubMed] [Google Scholar]
  52. Vena J. E., Freudenheim J. L., Marshall J. R., Laughlin R., Swanson M., Graham S. Risk of premenopausal breast cancer and use of electric blankets. Am J Epidemiol. 1994 Dec 1;140(11):974–979. doi: 10.1093/oxfordjournals.aje.a117204. [DOI] [PubMed] [Google Scholar]
  53. Vena J. E., Graham S., Hellmann R., Swanson M., Brasure J. Use of electric blankets and risk of postmenopausal breast cancer. Am J Epidemiol. 1991 Jul 15;134(2):180–185. doi: 10.1093/oxfordjournals.aje.a116070. [DOI] [PubMed] [Google Scholar]
  54. Vågerö D., Olin R. Incidence of cancer in the electronics industry: using the new Swedish Cancer Environment Registry as a screening instrument. Br J Ind Med. 1983 May;40(2):188–192. doi: 10.1136/oem.40.2.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Welker H. A., Semm P., Willig R. P., Commentz J. C., Wiltschko W., Vollrath L. Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland. Exp Brain Res. 1983;50(2-3):426–432. doi: 10.1007/BF00239209. [DOI] [PubMed] [Google Scholar]
  56. Willett W. C., Hunter D. J., Stampfer M. J., Colditz G., Manson J. E., Spiegelman D., Rosner B., Hennekens C. H., Speizer F. E. Dietary fat and fiber in relation to risk of breast cancer. An 8-year follow-up. JAMA. 1992 Oct 21;268(15):2037–2044. [PubMed] [Google Scholar]
  57. Wilson B. W., Anderson L. E., Hilton D. I., Phillips R. D. Chronic exposure to 60-Hz electric fields: effects on pineal function in the rat. Bioelectromagnetics. 1981;2(4):371–380. doi: 10.1002/bem.2250020408. [DOI] [PubMed] [Google Scholar]
  58. Wolff M. S., Toniolo P. G., Lee E. W., Rivera M., Dubin N. Blood levels of organochlorine residues and risk of breast cancer. J Natl Cancer Inst. 1993 Apr 21;85(8):648–652. doi: 10.1093/jnci/85.8.648. [DOI] [PubMed] [Google Scholar]
  59. Yellon S. M. Acute 60 Hz magnetic field exposure effects on the melatonin rhythm in the pineal gland and circulation of the adult Djungarian hamster. J Pineal Res. 1994 Apr;16(3):136–144. doi: 10.1111/j.1600-079x.1994.tb00093.x. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES