Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1996 Mar;104(Suppl 1):5–21. doi: 10.1289/ehp.96104s15

Fish models for environmental carcinogenesis: the rainbow trout.

G S Bailey 1, D E Williams 1, J D Hendricks 1
PMCID: PMC1469568  PMID: 8722107

Abstract

Progress over the past 30 years has revealed many strengths of the rainbow trout as an alternative model for environmental carcinogenesis research. These include low rearing costs, an early life-stage ultrasensitive bioassay, sensitivity to many classes of carcinogen, a well-described tumor pathology, responsiveness to tumor promoters and inhibitors, and a mechanistically informative nonmammalian comparative status. Low-cost husbandry, for example, has permitted statistically challenging tumor study designs with up to 10,000 trout to investigate the quantitative interrelationships among carcinogen dose, anticarcinogen dose, DNA adduct formation, and final tumor outcome. The basic elements of the trout carcinogen bioassay include multiple exposure routes, carcinogen response, husbandry requirements, and pathology. The principal known neoplasms occur in liver (mixed hepatocellular/cholangiocellular adenoma and carcinoma, hepatocellular carcinoma), kidney (nephroblastoma), swim bladder (adenopapilloma), and stomach (adenopapilloma). Trout possess a complex but incompletely characterized array of cytochromes P450, transferases, and other enzymic systems for phase I and phase II procarcinogen metabolism. In general, trout exhibit only limited capacity for DNA repair, especially for removal of bulky DNA adducts. This factor, together with a high capacity for P450 bioactivation and negligible glutathione transferase-mediated detoxication of the epoxide, accounts for the exceptional sensitivity of trout to aflatoxin B1 carcinogenesis. At the gene level, all trout tumors except nephroblastoma exhibit variable and often high incidences of oncogenic Ki-ras gene mutations. Mutations in the trout p53 tumor suppressor gene have yet to be described. There are many aspects of the trout model, especially the lack of complete organ homology, that limit its application as a surrogate for human cancer research. Within these limitations, however, it is apparent that trout and other fish models can serve as highly useful adjuncts to conventional rodent models in the study of environmental carcinogenesis and its modulation. For some problems, fish models can provide wholly unique approaches.

Full text

PDF
5

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arillo A., Tosetti F. Denitrosation of N-nitrosodimethylamine and N-nitrosomethylurea by liver microsomes from trout (Salmo gairdneri Rich.). Environ Res. 1987 Apr;42(2):366–371. doi: 10.1016/s0013-9351(87)80202-5. [DOI] [PubMed] [Google Scholar]
  2. Ashley L. M., Halver J. E. Dimethylnitrosamine-induced hepatic cell carcinoma in rainbow trout. J Natl Cancer Inst. 1968 Aug;41(2):531–552. [PubMed] [Google Scholar]
  3. Ayres J. L., Lee D. J., Wales J. H., Sinnhuber R. O. Aflatoxin structure and hepatocarcinogenicity in rainbow trout (Salmo gairdneri). J Natl Cancer Inst. 1971 Mar;46(3):561–564. [PubMed] [Google Scholar]
  4. Bailey G. S., Hendricks J. D., Shelton D. W., Nixon J. E., Pawlowski N. E. Enhancement of carcinogenesis by the natural anticarcinogen indole-3-carbinol. J Natl Cancer Inst. 1987 May;78(5):931–934. [PubMed] [Google Scholar]
  5. Bailey G. S., Loveland P. M., Pereira C., Pierce D., Hendricks J. D., Groopman J. D. Quantitative carcinogenesis and dosimetry in rainbow trout for aflatoxin B1 and aflatoxicol, two aflatoxins that form the same DNA adduct. Mutat Res. 1994 Aug;313(1):25–38. doi: 10.1016/0165-1161(94)90030-2. [DOI] [PubMed] [Google Scholar]
  6. Bailey G. S., Williams D. E., Wilcox J. S., Loveland P. M., Coulombe R. A., Hendricks J. D. Aflatoxin B1 carcinogenesis and its relation to DNA adduct formation and adduct persistence in sensitive and resistant salmonid fish. Carcinogenesis. 1988 Nov;9(11):1919–1926. doi: 10.1093/carcin/9.11.1919. [DOI] [PubMed] [Google Scholar]
  7. Bailey G., Selivonchick D., Hendricks J. Initiation, promotion, and inhibition of carcinogenesis in rainbow trout. Environ Health Perspect. 1987 Apr;71:147–153. doi: 10.1289/ehp.8771147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bauer D. H., Lee D. J., Sinnhuber R. O. Acute toxicity of aflatoxins B1 and G1 in the rainbow trout (Salmo gairdneri). Toxicol Appl Pharmacol. 1969 Sep;15(2):415–419. doi: 10.1016/0041-008x(69)90039-8. [DOI] [PubMed] [Google Scholar]
  9. Bechtel D. H. Molecular dosimetry of hepatic aflatoxin B1-DNA adducts: linear correlation with hepatic cancer risk. Regul Toxicol Pharmacol. 1989 Aug;10(1):74–81. doi: 10.1016/0273-2300(89)90014-7. [DOI] [PubMed] [Google Scholar]
  10. Beland F. A., Poirier M. C. Significance of DNA adduct studies in animal models for cancer molecular dosimetry and risk assessment. Environ Health Perspect. 1993 Mar;99:5–10. doi: 10.1289/ehp.93995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Berndtson A. K., Chen T. T. Two unique CYP1 genes are expressed in response to 3-methylcholanthrene treatment in rainbow trout. Arch Biochem Biophys. 1994 Apr;310(1):187–195. doi: 10.1006/abbi.1994.1156. [DOI] [PubMed] [Google Scholar]
  12. Bjeldanes L. F., Kim J. Y., Grose K. R., Bartholomew J. C., Bradfield C. A. Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9543–9547. doi: 10.1073/pnas.88.21.9543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Black J. J., Maccubbin A. E., Schiffert M. A reliable, efficient, microinjection apparatus and methodology for the in vivo exposure of rainbow trout and salmon embryos to chemical carcinogens. J Natl Cancer Inst. 1985 Dec;75(6):1123–1128. [PubMed] [Google Scholar]
  14. Bolton M. G., Muñoz A., Jacobson L. P., Groopman J. D., Maxuitenko Y. Y., Roebuck B. D., Kensler T. W. Transient intervention with oltipraz protects against aflatoxin-induced hepatic tumorigenesis. Cancer Res. 1993 Aug 1;53(15):3499–3504. [PubMed] [Google Scholar]
  15. Bos J. L. ras oncogenes in human cancer: a review. Cancer Res. 1989 Sep 1;49(17):4682–4689. [PubMed] [Google Scholar]
  16. Breinholt V., Hendricks J., Pereira C., Arbogast D., Bailey G. Dietary chlorophyllin is a potent inhibitor of aflatoxin B1 hepatocarcinogenesis in rainbow trout. Cancer Res. 1995 Jan 1;55(1):57–62. [PubMed] [Google Scholar]
  17. Buetler T. M., Slone D., Eaton D. L. Comparison of the aflatoxin B1-8,9-epoxide conjugating activities of two bacterially expressed alpha class glutathione S-transferase isozymes from mouse and rat. Biochem Biophys Res Commun. 1992 Oct 30;188(2):597–603. doi: 10.1016/0006-291x(92)91098-b. [DOI] [PubMed] [Google Scholar]
  18. Buhler D. R., Yang Y. H., Dreher T. W., Miranda C. L., Wang J. L. Cloning and sequencing of the major rainbow trout constitutive cytochrome P450 (CYP2K1): identification of a new cytochrome P450 gene subfamily and its expression in mature rainbow trout liver and trunk kidney. Arch Biochem Biophys. 1994 Jul;312(1):45–51. doi: 10.1006/abbi.1994.1278. [DOI] [PubMed] [Google Scholar]
  19. Buss P., Caviezel M., Lutz W. K. Linear dose-response relationship for DNA adducts in rat liver from chronic exposure to aflatoxin B1. Carcinogenesis. 1990 Dec;11(12):2133–2135. doi: 10.1093/carcin/11.12.2133. [DOI] [PubMed] [Google Scholar]
  20. Camus A. M., Geneste O., Honkakoski P., Béréziat J. C., Henderson C. J., Wolf C. R., Bartsch H., Lang M. A. High variability of nitrosamine metabolism among individuals: role of cytochromes P450 2A6 and 2E1 in the dealkylation of N-nitrosodimethylamine and N-nitrosodiethylamine in mice and humans. Mol Carcinog. 1993;7(4):268–275. doi: 10.1002/mc.2940070410. [DOI] [PubMed] [Google Scholar]
  21. Chang Y. J., Mathews C., Mangold K., Marien K., Hendricks J., Bailey G. Analysis of ras gene mutations in rainbow trout liver tumors initiated by aflatoxin B1. Mol Carcinog. 1991;4(2):112–119. doi: 10.1002/mc.2940040206. [DOI] [PubMed] [Google Scholar]
  22. Choy W. N. A review of the dose-response induction of DNA adducts by aflatoxin B1 and its implications to quantitative cancer-risk assessment. Mutat Res. 1993 Mar;296(3):181–198. doi: 10.1016/0165-1110(93)90010-k. [DOI] [PubMed] [Google Scholar]
  23. Croy R. G., Nixon J. E., Sinnhuber R. O., Wogan G. N. Investigation of covalent aflatoxin B1-DNA adducts formed in vivo in rainbow trout (Salmo gairdneri) embryos and liver. Carcinogenesis. 1980;1(11):903–909. doi: 10.1093/carcin/1.11.903. [DOI] [PubMed] [Google Scholar]
  24. Curtis L. R., Zhang Q., el-Zahr C., Carpenter H. M., Miranda C. L., Buhler D. R., Selivonchick D. P., Arbogast D. N., Hendricks J. D. Temperature-modulated incidence of aflatoxin B1-initiated liver cancer in rainbow trout. Fundam Appl Toxicol. 1995 Apr;25(1):146–153. doi: 10.1006/faat.1995.1048. [DOI] [PubMed] [Google Scholar]
  25. Dashwood R. H., Arbogast D. N., Fong A. T., Hendricks J. D., Bailey G. S. Mechanisms of anti-carcinogenesis by indole-3-carbinol: detailed in vivo DNA binding dose-response studies after dietary administration with aflatoxin B1. Carcinogenesis. 1988 Mar;9(3):427–432. doi: 10.1093/carcin/9.3.427. [DOI] [PubMed] [Google Scholar]
  26. Dashwood R. H., Arbogast D. N., Fong A. T., Pereira C., Hendricks J. D., Bailey G. S. Quantitative inter-relationships between aflatoxin B1 carcinogen dose, indole-3-carbinol anti-carcinogen dose, target organ DNA adduction and final tumor response. Carcinogenesis. 1989 Jan;10(1):175–181. doi: 10.1093/carcin/10.1.175. [DOI] [PubMed] [Google Scholar]
  27. Dashwood R. H., Fong A. T., Arbogast D. N., Bjeldanes L. F., Hendricks J. D., Bailey G. S. Anticarcinogenic activity of indole-3-carbinol acid products: ultrasensitive bioassay by trout embryo microinjection. Cancer Res. 1994 Jul 1;54(13):3617–3619. [PubMed] [Google Scholar]
  28. Dashwood R. H., Fong A. T., Williams D. E., Hendricks J. D., Bailey G. S. Promotion of aflatoxin B1 carcinogenesis by the natural tumor modulator indole-3-carbinol: influence of dose, duration, and intermittent exposure on indole-3-carbinol promotional potency. Cancer Res. 1991 May 1;51(9):2362–2365. [PubMed] [Google Scholar]
  29. Devanesan P. D., Cremonesi P., Nunnally J. E., Rogan E. G., Cavalieri E. L. Metabolism and mutagenicity of dibenzo[a,e]pyrene and the very potent environmental carcinogen dibenzo[a,l]pyrene. Chem Res Toxicol. 1990 Nov-Dec;3(6):580–586. doi: 10.1021/tx00018a014. [DOI] [PubMed] [Google Scholar]
  30. Eaton D. L., Gallagher E. P. Mechanisms of aflatoxin carcinogenesis. Annu Rev Pharmacol Toxicol. 1994;34:135–172. doi: 10.1146/annurev.pa.34.040194.001031. [DOI] [PubMed] [Google Scholar]
  31. Falany C. N., Wheeler J., Coward L., Keehan D., Falany J. L., Barnes S. Bioactivation of 7-hydroxymethyl-12-methylbenz[a]anthracene by rat liver bile acid sulfotransferase I. J Biochem Toxicol. 1992 Winter;7(4):241–248. doi: 10.1002/jbt.2570070407. [DOI] [PubMed] [Google Scholar]
  32. Fong A. T., Dashwood R. H., Cheng R., Mathews C., Ford B., Hendricks J. D., Bailey G. S. Carcinogenicity, metabolism and Ki-ras proto-oncogene activation by 7,12-dimethylbenz[a]anthracene in rainbow trout embryos. Carcinogenesis. 1993 Apr;14(4):629–635. doi: 10.1093/carcin/14.4.629. [DOI] [PubMed] [Google Scholar]
  33. Fong A. T., Hendricks J. D., Dashwood R. H., Van Winkle S., Bailey G. S. Formation and persistence of ethylguanines in liver DNA of rainbow trout (Salmo gairdneri) treated with diethylnitrosamine by water exposure. Food Chem Toxicol. 1988 Aug;26(8):699–704. doi: 10.1016/0278-6915(88)90069-5. [DOI] [PubMed] [Google Scholar]
  34. Fong A. T., Hendricks J. D., Dashwood R. H., Van Winkle S., Lee B. C., Bailey G. S. Modulation of diethylnitrosamine-induced hepatocarcinogenesis and O6-ethylguanine formation in rainbow trout by indole-3-carbinol, beta-naphthoflavone, and Aroclor 1254. Toxicol Appl Pharmacol. 1988 Oct;96(1):93–100. doi: 10.1016/0041-008x(88)90251-7. [DOI] [PubMed] [Google Scholar]
  35. Fournie J. W., Hawkins W. E., Overstreet R. M., Walker W. W. Exocrine pancreatic neoplasms induced by methylazoxymethanol acetate in the guppy Poecilia reticulata. J Natl Cancer Inst. 1987 Apr;78(4):715–725. [PubMed] [Google Scholar]
  36. Gallagher E. P., Wienkers L. C., Stapleton P. L., Kunze K. L., Eaton D. L. Role of human microsomal and human complementary DNA-expressed cytochromes P4501A2 and P4503A4 in the bioactivation of aflatoxin B1. Cancer Res. 1994 Jan 1;54(1):101–108. [PubMed] [Google Scholar]
  37. Goeger D. E., Shelton D. W., Hendricks J. D., Pereira C., Bailey G. S. Comparative effect of dietary butylated hydroxyanisole and beta-naphthoflavone on aflatoxin B1 metabolism, DNA adduct formation, and carcinogenesis in rainbow trout. Carcinogenesis. 1988 Oct;9(10):1793–1800. doi: 10.1093/carcin/9.10.1793. [DOI] [PubMed] [Google Scholar]
  38. Gonzalez F. J., Gelboin H. V. Role of human cytochromes P450 in the metabolic activation of chemical carcinogens and toxins. Drug Metab Rev. 1994;26(1-2):165–183. doi: 10.3109/03602539409029789. [DOI] [PubMed] [Google Scholar]
  39. Greenblatt M. S., Bennett W. P., Hollstein M., Harris C. C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994 Sep 15;54(18):4855–4878. [PubMed] [Google Scholar]
  40. Grieco M. P., Hendricks J. D., Scanlan R. A., Sinnhuber R. O., Pierce D. A. Carcinogenicity and acute toxicity of dimethylnitrosamine in rainbow trout (Salmo gairdneri). J Natl Cancer Inst. 1978 May;60(5):1127–1131. doi: 10.1093/jnci/60.5.1127. [DOI] [PubMed] [Google Scholar]
  41. Guengerich F. P. Catalytic selectivity of human cytochrome P450 enzymes: relevance to drug metabolism and toxicity. Toxicol Lett. 1994 Feb 1;70(2):133–138. doi: 10.1016/0378-4274(94)90156-2. [DOI] [PubMed] [Google Scholar]
  42. Harada T., Hatanaka J., Enomoto M. Liver cell carcinomas in the medaka (Oryzias latipes) induced by methylazoxymethanol-acetate. J Comp Pathol. 1988 May;98(4):441–452. doi: 10.1016/0021-9975(88)90092-8. [DOI] [PubMed] [Google Scholar]
  43. Hard G. C., Grasso P. Nephroblastoma in the rat: histology of a spontaneous tumor, identity with respect to renal mesenchymal neoplasms, and a review of previously recorded cases. J Natl Cancer Inst. 1976 Aug;57(2):323–329. doi: 10.1093/jnci/57.2.323. [DOI] [PubMed] [Google Scholar]
  44. Harris C. C. Interindividual variation among humans in carcinogen metabolism, DNA adduct formation and DNA repair. Carcinogenesis. 1989 Sep;10(9):1563–1566. doi: 10.1093/carcin/10.9.1563. [DOI] [PubMed] [Google Scholar]
  45. Hatanaka J., Doke N., Harada T., Aikawa T., Enomoto M. Usefulness and rapidity of screening for the toxicity and carcinogenicity of chemicals in medaka, Oryzias latipes. Jpn J Exp Med. 1982 Oct;52(5):243–253. [PubMed] [Google Scholar]
  46. Hawkins W. E., Fournie J. W., Overstreet R. M., Walker W. W. Intraocular neoplasms induced by methylazoxymethanol acetate in Japanese medaka (Oryzias latipes). J Natl Cancer Inst. 1986 Mar;76(3):453–465. [PubMed] [Google Scholar]
  47. Hawkins W. E., Walker W. W., Overstreet R. M., Lytle T. F., Lytle J. S. Dose-related carcinogenic effects of water-borne benzo[a]pyrene on livers of two small fish species. Ecotoxicol Environ Saf. 1988 Dec;16(3):219–231. doi: 10.1016/0147-6513(88)90052-8. [DOI] [PubMed] [Google Scholar]
  48. Hayes J. D., Judah D. J., McLellan L. I., Neal G. E. Contribution of the glutathione S-transferases to the mechanisms of resistance to aflatoxin B1. Pharmacol Ther. 1991;50(3):443–472. doi: 10.1016/0163-7258(91)90053-o. [DOI] [PubMed] [Google Scholar]
  49. Hayes M. A., Smith I. R., Rushmore T. H., Crane T. L., Thorn C., Kocal T. E., Ferguson H. W. Pathogenesis of skin and liver neoplasms in white suckers from industrially polluted areas in Lake Ontario. Sci Total Environ. 1990 May 1;94(1-2):105–123. doi: 10.1016/0048-9697(90)90367-4. [DOI] [PubMed] [Google Scholar]
  50. Heilmann L. J., Sheen Y. Y., Bigelow S. W., Nebert D. W. Trout P450IA1: cDNA and deduced protein sequence, expression in liver, and evolutionary significance. DNA. 1988 Jul-Aug;7(6):379–387. doi: 10.1089/dna.1.1988.7.379. [DOI] [PubMed] [Google Scholar]
  51. Hendricks J. D., Cheng R., Shelton D. W., Pereira C. B., Bailey G. S. Dose-dependent carcinogenicity and frequent Ki-ras proto-oncogene activation by dietary N-nitrosodiethylamine in rainbow trout. Fundam Appl Toxicol. 1994 Jul;23(1):53–62. doi: 10.1006/faat.1994.1078. [DOI] [PubMed] [Google Scholar]
  52. Hendricks J. D., Meyers T. R., Casteel J. L., Nixon J. E., Loveland P. M., Bailey G. S. Rainbow trout embryos: advantages and limitations for carcinogenesis research. Natl Cancer Inst Monogr. 1984 May;65:129–137. [PubMed] [Google Scholar]
  53. Hendricks J. D., Meyers T. R., Shelton D. W., Casteel J. L., Bailey G. S. Hepatocarcinogenicity of benzo[a]pyrene to rainbow trout by dietary exposure and intraperitoneal injection. J Natl Cancer Inst. 1985 Apr;74(4):839–851. [PubMed] [Google Scholar]
  54. Hendricks J. D., Meyers T. R., Shelton D. W. Histological progression of hepatic neoplasia in rainbow trout (Salmo gairdneri). Natl Cancer Inst Monogr. 1984 May;65:321–336. [PubMed] [Google Scholar]
  55. Hendricks J. D., Scanlan R. A., Williams J. L., Sinnhuber R. O., Grieco M. P. Carcinogenicity of N-methyl-N'-nitro-N-nitrosoguanidine to the livers and kidneys of rainbow trout (Salmo gairdneri) exposed as embryos. J Natl Cancer Inst. 1980 Jun;64(6):1511–1519. doi: 10.1093/jnci/64.6.1511. [DOI] [PubMed] [Google Scholar]
  56. Hendricks J. D., Shelton D. W., Loveland P. M., Pereira C. B., Bailey G. S. Carcinogenicity of dietary dimethylnitrosomorpholine, N-methyl-N'-nitro-N-nitrosoguanidine, and dibromoethane in rainbow trout. Toxicol Pathol. 1995 Jul-Aug;23(4):447–457. doi: 10.1177/019262339502300402. [DOI] [PubMed] [Google Scholar]
  57. Hendricks J. D., Sinnhuber R. O., Loveland P. M., Pawlowski N. E., Nixon J. E. Hepatocarcinogenicity of glandless cottonseeds and cottonseed oil to rainbow trout (Salmo gairdnerii). Science. 1980 Apr 18;208(4441):309–311. doi: 10.1126/science.6892734. [DOI] [PubMed] [Google Scholar]
  58. Hendricks J. D., Sinnhuber R. O., Nixon J. E., Wales J. H., Masri M. S., Hsieh D. P. Carcinogenic response of rainbow trout (Salmo gairdneri) to aflatoxin Q1 and synergistic effect of cyclopropenoid fatty acids. J Natl Cancer Inst. 1980 Mar;64(3):523–528. [PubMed] [Google Scholar]
  59. Hendricks J. D., Sinnhuber R. O., Wales J. H., Stack M. E., Hsieh D. P. Hepatocarcinogenicity of sterigmatocystin and versicolorin A to rainbow trout (Salmo gairdneri) embryos. J Natl Cancer Inst. 1980 Jun;64(6):1503–1509. doi: 10.1093/jnci/64.6.1503. [DOI] [PubMed] [Google Scholar]
  60. Hendricks J. D., Wales J. H., Sinnhuber R. O., Nixon J. E., Loveland P. M., Scanlan R. A. Rainbow trout (Salmo gairdneri) embryos: a sensitive animal model for experimental carcinogenesis. Fed Proc. 1980 Dec;39(14):3222–3229. [PubMed] [Google Scholar]
  61. Ishikawa T., Shimamine T., Takayama S. Histologic and electron microscopy observations on diethylnitrosamine-induced hepatomas in small aquarium fish (Oryzias latipes). J Natl Cancer Inst. 1975 Oct;55(4):909–916. doi: 10.1093/jnci/55.4.909. [DOI] [PubMed] [Google Scholar]
  62. Kelly J. D., Dutchuk M., Hendricks J. D., Williams D. E. Hepatocarcinogenic potency of mixed and pure enantiomers of trans-7,8-dihydrobenzo[a]pyrene-7,8-diol in trout. Cancer Lett. 1993 Feb;68(2-3):225–229. doi: 10.1016/0304-3835(93)90150-8. [DOI] [PubMed] [Google Scholar]
  63. Kelly J. D., Dutchuk M., Takahashi N., Reddy A., Hendricks J. D., Williams D. E. Covalent binding of (+) 7S-trans-7,8-dihydrobenzo [a]pyrene-7,8-diol to trout DNA: P-450- and peroxidation-dependent pathways. Cancer Lett. 1993 Oct 15;74(1-2):111–117. doi: 10.1016/0304-3835(93)90052-b. [DOI] [PubMed] [Google Scholar]
  64. Kelly J. D., Orner G. A., Hendricks J. D., Williams D. E. Dietary hydrogen peroxide enhances hepatocarcinogenesis in trout: correlation with 8-hydroxy-2'-deoxyguanosine levels in liver DNA. Carcinogenesis. 1992 Sep;13(9):1639–1642. doi: 10.1093/carcin/13.9.1639. [DOI] [PubMed] [Google Scholar]
  65. Khudoley V. V. Use of aquarium fish, Danio rerio and Poecilia reticulata, as test species for evaluation of nitrosamine carcinogenicity. Natl Cancer Inst Monogr. 1984 May;65:65–70. [PubMed] [Google Scholar]
  66. Kim D. J., Lee K. K., Han B. S., Ahn B., Bae J. H., Jang J. J. Biphasic modifying effect of indole-3-carbinol on diethylnitrosamine-induced preneoplastic glutathione S-transferase placental form-positive liver cell foci in Sprague-Dawley rats. Jpn J Cancer Res. 1994 Jun;85(6):578–583. doi: 10.1111/j.1349-7006.1994.tb02399.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Kleinow K. M., Melancon M. J., Lech J. J. Biotransformation and induction: implications for toxicity, bioaccumulation and monitoring of environmental xenobiotics in fish. Environ Health Perspect. 1987 Apr;71:105–119. doi: 10.1289/ehp.8771105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Law J. M., Hawkins W. E., Overstreet R. M., Walker W. W. Hepatocarcinogenesis in western mosquitofish (Gambusia affinis) exposed to methylazoxymethanol acetate. J Comp Pathol. 1994 Feb;110(2):117–127. doi: 10.1016/s0021-9975(08)80183-1. [DOI] [PubMed] [Google Scholar]
  69. Lee B. C., Hendricks J. D., Bailey G. S. Metaplastic pancreatic cells in liver tumors induced by diethylnitrosamine. Exp Mol Pathol. 1989 Feb;50(1):104–113. doi: 10.1016/0014-4800(89)90060-9. [DOI] [PubMed] [Google Scholar]
  70. Lee D. J., Wales J. H., Ayres J. L., Sinnhuber R. O. Synergism between cyclopropenoid fatty acids and chemical carcinogens in rainbow trout (Salmo gairdneri). Cancer Res. 1968 Nov;28(11):2312–2318. [PubMed] [Google Scholar]
  71. Lee D. J., Wales J. H., Sinnhuber R. O. Promotion of aflatoxin-induced hepatoma growth in trout by methyl malvalate and sterculate. Cancer Res. 1971 Jul;31(7):960–963. [PubMed] [Google Scholar]
  72. Lorenzana R. M., Hedstrom O. R., Buhler D. R. Localization of cytochrome P-450 in the head and trunk kidney of rainbow trout (Salmo gairdneri). Toxicol Appl Pharmacol. 1988 Oct;96(1):159–167. doi: 10.1016/0041-008x(88)90258-x. [DOI] [PubMed] [Google Scholar]
  73. Manam S., Storer R. D., Prahalada S., Leander K. R., Kraynak A. R., Ledwith B. J., van Zwieten M. J., Bradley M. O., Nichols W. W. Activation of the Ha-, Ki-, and N-ras genes in chemically induced liver tumors from CD-1 mice. Cancer Res. 1992 Jun 15;52(12):3347–3352. [PubMed] [Google Scholar]
  74. Mangold K., Chang Y. J., Mathews C., Marien K., Hendricks J., Bailey G. Expression of ras genes in rainbow trout liver. Mol Carcinog. 1991;4(2):97–102. doi: 10.1002/mc.2940040204. [DOI] [PubMed] [Google Scholar]
  75. Matsushima T., Sugimura T. Experimental carcinogenesis in small aquarium fishes. Prog Exp Tumor Res. 1976;20:367–379. doi: 10.1159/000398711. [DOI] [PubMed] [Google Scholar]
  76. Metcalfe C. D., Sonstegard R. A. Microinjection of carcinogens into rainbow trout embryos: an in vivo carcinogenesis assay. J Natl Cancer Inst. 1984 Nov;73(5):1125–1132. [PubMed] [Google Scholar]
  77. Miranda C. L., Wang J. L., Henderson M. C., Buhler D. R. Immunological characterization of constitutive isozymes of cytochrome P-450 from rainbow trout. Evidence for homology with phenobarbital-induced rat P-450s. Biochim Biophys Acta. 1990 Feb 9;1037(2):155–160. doi: 10.1016/0167-4838(90)90161-8. [DOI] [PubMed] [Google Scholar]
  78. Miranda C. L., Wang J. L., Henderson M. C., Buhler D. R. Purification and characterization of hepatic steroid hydroxylases from untreated rainbow trout. Arch Biochem Biophys. 1989 Jan;268(1):227–238. doi: 10.1016/0003-9861(89)90584-5. [DOI] [PubMed] [Google Scholar]
  79. Miranda C. L., Wang J. L., Henderson M. C., Williams D. E., Buhler D. R. Regiospecificity in the hydroxylation of lauric acid by rainbow trout hepatic cytochrome P450 isozymes. Biochem Biophys Res Commun. 1990 Sep 14;171(2):537–542. doi: 10.1016/0006-291x(90)91179-v. [DOI] [PubMed] [Google Scholar]
  80. Miranda C. L., Wang J. L., Henderson M. C., Zhao X., Guengerich F. P., Buhler D. R. Comparison of rainbow trout and mammalian cytochrome P450 enzymes: evidence for structural similarity between trout P450 LMC5 and human P450IIIA4. Biochem Biophys Res Commun. 1991 Apr 30;176(2):558–563. doi: 10.1016/s0006-291x(05)80220-7. [DOI] [PubMed] [Google Scholar]
  81. Murchelano R. A., Wolke R. E. Neoplasms and nonneoplastic liver lesions in winter flounder, Pseudopleuronectes americanus, from Boston Harbor, Massachusetts. Environ Health Perspect. 1991 Jan;90:17–26. doi: 10.1289/ehp.90-1519495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Myers M. S., Stehr C. M., Olson O. P., Johnson L. L., McCain B. B., Chan S. L., Varanasi U. Relationships between toxicopathic hepatic lesions and exposure to chemical contaminants in English sole (Pleuronectes vetulus), starry flounder (Platichthys stellatus), and white croaker (Genyonemus lineatus) from selected marine sites on the Pacific Coast, USA. Environ Health Perspect. 1994 Feb;102(2):200–215. doi: 10.1289/ehp.94102200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Nakazawa T., Hamaguchi S., Kyono-Hamaguchi Y. Histochemistry of liver tumors induced by diethylnitrosamine and differential sex susceptibility to carcinogenesis in Oryzias latipes. J Natl Cancer Inst. 1985 Sep;75(3):567–573. [PubMed] [Google Scholar]
  84. Nixon J. E., Hendricks J. D., Pawlowski N. E., Pereira C. B., Sinnhuber R. O., Bailey G. S. Inhibition of aflatoxin B1 carcinogenesis in rainbow trout by flavone and indole compounds. Carcinogenesis. 1984 May;5(5):615–619. doi: 10.1093/carcin/5.5.615. [DOI] [PubMed] [Google Scholar]
  85. Nunez O., Hendricks J. D., Duimstra J. R. Ultrastructure of hepatocellular neoplasms in aflatoxin B1 (AFB1)-initiated rainbow trout (Oncorhynchus mykiss). Toxicol Pathol. 1991;19(1):11–23. doi: 10.1177/019262339101900102. [DOI] [PubMed] [Google Scholar]
  86. Park E. H., Kim D. S. Hepatocarcinogenicity of diethylnitrosamine to the self-fertilizing hermaphroditic fish Rivulus marmoratus (Teleostomi: Cyprinodontidae). J Natl Cancer Inst. 1984 Oct;73(4):871–876. [PubMed] [Google Scholar]
  87. Potter D., Clarius T. M., Wright A. S., Watson W. P. Molecular dosimetry of DNA adducts in rainbow trout (Oncorhynchus mykiss) exposed to benzo(a)pyrene by different routes. Arch Toxicol. 1994;69(1):1–7. doi: 10.1007/s002040050128. [DOI] [PubMed] [Google Scholar]
  88. Pour P., Krüger F. W., Althoff J., Cardesa A., Mohr U. A new approach for induction of pancreatic neoplasms. Cancer Res. 1975 Aug;35(8):2259–2268. [PubMed] [Google Scholar]
  89. RamaKrishna N. V., Devanesan P. D., Rogan E. G., Cavalieri E. L., Jeong H., Jankowiak R., Small G. J. Mechanism of metabolic activation of the potent carcinogen 7,12-dimethylbenz[a]anthracene. Chem Res Toxicol. 1992 Mar-Apr;5(2):220–226. doi: 10.1021/tx00026a011. [DOI] [PubMed] [Google Scholar]
  90. Ramsdell H. S., Eaton D. L. Mouse liver glutathione S-transferase isoenzyme activity toward aflatoxin B1-8,9-epoxide and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide. Toxicol Appl Pharmacol. 1990 Sep 1;105(2):216–225. doi: 10.1016/0041-008x(90)90183-u. [DOI] [PubMed] [Google Scholar]
  91. Raney K. D., Meyer D. J., Ketterer B., Harris T. M., Guengerich F. P. Glutathione conjugation of aflatoxin B1 exo- and endo-epoxides by rat and human glutathione S-transferases. Chem Res Toxicol. 1992 Jul-Aug;5(4):470–478. doi: 10.1021/tx00028a004. [DOI] [PubMed] [Google Scholar]
  92. Rao M. S., Subbarao V., Kumar S., Yeldandi A. V., Reddy J. K. Phenotypic properties of liver tumors induced by dehydroepiandrosterone in F-344 rats. Jpn J Cancer Res. 1992 Nov;83(11):1179–1183. doi: 10.1111/j.1349-7006.1992.tb02742.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. STANTON M. F. DIETHYLNITROSAMINE-INDUCED HEPATIC DEGENERATION AND NEOPLASIA IN THE AQUARIUM FISH, BRACHYDANIO RERIO. J Natl Cancer Inst. 1965 Jan;34:117–130. doi: 10.1093/jnci/34.1.117. [DOI] [PubMed] [Google Scholar]
  94. Sato S., Matsushima T., Tanaka N., Sugimura T., Takashima F. Hepatic tumors in the guppy (Lebistes reticulatus) induced by aflatoxin B 1 , dimethylintrosamine, and 2-acetylaminofluorene. J Natl Cancer Inst. 1973 Mar;50(3):767–778. doi: 10.1093/jnci/50.3.767. [DOI] [PubMed] [Google Scholar]
  95. Scarpelli D. G. Drug metabolism and aflatoxin-induced hepatoma in rainbow trout (Salmo gairdneri). Prog Exp Tumor Res. 1976;20:339–350. doi: 10.1159/000398709. [DOI] [PubMed] [Google Scholar]
  96. Schnitz A. R., Squibb K. S., O'Connor J. M. Time-varying conjugation of 7,12-dimethylbenz[a]anthracene metabolites in rainbow trout (Oncorhynchus mykiss). Toxicol Appl Pharmacol. 1993 Jul;121(1):58–70. doi: 10.1006/taap.1993.1129. [DOI] [PubMed] [Google Scholar]
  97. Schoenhard G. L., Hendricks J. D., Nixon J. E., Lee D. J., Wales J. H., Sinnhuber R. O., Pawlowski N. E. Aflatoxicol-induced hepatocellular carcinoma in rainbow trout (Salmo gairdneri) and the synergistic effects of cyclopropenoid fatty acids. Cancer Res. 1981 Mar;41(3):1011–1014. [PubMed] [Google Scholar]
  98. Schultz M. E., Schultz R. J. Diethylnitrosamine-induced hepatic tumors in wild vs. inbred strains of a viviparous fish. J Hered. 1982 Jan-Feb;73(1):43–48. doi: 10.1093/oxfordjournals.jhered.a109573. [DOI] [PubMed] [Google Scholar]
  99. Schultz M. E., Schultz R. J. Induction of hepatic tumors with 7,12-dimethylbenz[a]anthracene in two species of viviparous fishes (Genus poeciliopsis). Environ Res. 1982 Apr;27(2):337–351. doi: 10.1016/0013-9351(82)90089-5. [DOI] [PubMed] [Google Scholar]
  100. Schwab M., Abdo S., Ahuja M. R., Kollinger G., Anders A., Anders F., Frese K. Genetics of susceptibility in the platyfish/swordtail tumor system to develop fibrosarcoma and rhabdomyosarcoma following treatment with N-methyl-N-nitrosourea (MNU). Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 1978;91(3):301–315. doi: 10.1007/BF00312292. [DOI] [PubMed] [Google Scholar]
  101. Shelton D. W., Goeger D. E., Hendricks J. D., Bailey G. S. Mechanisms of anti-carcinogenesis: the distribution and metabolism of aflatoxin B1 in rainbow trout fed aroclor 1254. Carcinogenesis. 1986 Jul;7(7):1065–1071. doi: 10.1093/carcin/7.7.1065. [DOI] [PubMed] [Google Scholar]
  102. Shelton D. W., Hendricks J. D., Bailey G. S. The hepatocarcinogenicity of diethylnitrosamine to rainbow trout and its enhancement by Aroclors 1242 and 1254. Toxicol Lett. 1984 Jul;22(1):27–31. doi: 10.1016/0378-4274(84)90041-9. [DOI] [PubMed] [Google Scholar]
  103. Shelton D. W., Hendricks J. D., Coulombe R. A., Bailey G. S. Effect of dose on the inhibition of carcinogenesis/mutagenesis by Aroclor 1254 in rainbow trout fed aflatoxin B1. J Toxicol Environ Health. 1984;13(4-6):649–657. doi: 10.1080/15287398409530529. [DOI] [PubMed] [Google Scholar]
  104. Shimada T., Guengerich F. P. Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc Natl Acad Sci U S A. 1989 Jan;86(2):462–465. doi: 10.1073/pnas.86.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Sinnhuber R. O., Hendricks J. D., Wales J. H., Putnam G. B. Neoplasms in rainbow trout, a sensitive animal model for environmental carcinogenesis. Ann N Y Acad Sci. 1978 Sep 29;298:389–408. doi: 10.1111/j.1749-6632.1977.tb19280.x. [DOI] [PubMed] [Google Scholar]
  106. Sinnhuber R. O., Lee D. J., Wales J. H., Landers M. K., Keyl A. C. Hepatic carcinogenesis of aflatoxin M1 in rainbow trout (Salmo gairdneri) and its enchancement by cyclopropene fatty acids. J Natl Cancer Inst. 1974 Nov;53(5):1285–1288. doi: 10.1093/jnci/53.5.1285. [DOI] [PubMed] [Google Scholar]
  107. Sinnhuber R. O., Wales J. H., Ayres J. L., Engebrecht R. H., Amend D. L. Dietary factors and hepatoma in rainbow trout (Salmo gairdneri). I. Aflatoxins in vegetable protein feedstuffs. J Natl Cancer Inst. 1968 Sep;41(3):711–718. [PubMed] [Google Scholar]
  108. Soman N. R., Wogan G. N. Activation of the c-Ki-ras oncogene in aflatoxin B1-induced hepatocellular carcinoma and adenoma in the rat: detection by denaturing gradient gel electrophoresis. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):2045–2049. doi: 10.1073/pnas.90.5.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Stegeman J. J. Cytochrome P450 forms in fish: catalytic, immunological and sequence similarities. Xenobiotica. 1989 Oct;19(10):1093–1110. doi: 10.3109/00498258909043164. [DOI] [PubMed] [Google Scholar]
  110. Stegeman J. J., Lech J. J. Cytochrome P-450 monooxygenase systems in aquatic species: carcinogen metabolism and biomarkers for carcinogen and pollutant exposure. Environ Health Perspect. 1991 Jan;90:101–109. doi: 10.1289/ehp.90-1519513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Stresser D. M., Bjeldanes L. F., Bailey G. S., Williams D. E. The anticarcinogen 3,3'-diindolylmethane is an inhibitor of cytochrome P-450. J Biochem Toxicol. 1995 Aug;10(4):191–201. doi: 10.1002/jbt.2570100403. [DOI] [PubMed] [Google Scholar]
  112. Stresser D. M., Williams D. E., McLellan L. I., Harris T. M., Bailey G. S. Indole-3-carbinol induces a rat liver glutathione transferase subunit (Yc2) with high activity toward aflatoxin B1 exo-epoxide. Association with reduced levels of hepatic aflatoxin-DNA adducts in vivo. Drug Metab Dispos. 1994 May-Jun;22(3):392–399. [PubMed] [Google Scholar]
  113. Surh Y. J., Liem A., Miller E. C., Miller J. A. 7-Sulfooxymethyl-12-methylbenz[a]anthracene is an electrophilic mutagen, but does not appear to play a role in carcinogenesis by 7,12-dimethylbenz[a]anthracene or 7-hydroxymethyl-12-methylbenz[a]anthracene. Carcinogenesis. 1991 Feb;12(2):339–347. doi: 10.1093/carcin/12.2.339. [DOI] [PubMed] [Google Scholar]
  114. Tada M., Omata M., Ohto M. High incidence of ras gene mutation in intrahepatic cholangiocarcinoma. Cancer. 1992 Mar 1;69(5):1115–1118. doi: 10.1002/cncr.2820690509. [DOI] [PubMed] [Google Scholar]
  115. Takahashi N., Dashwood R. H., Bjeldanes L. F., Bailey G. S., Williams D. E. Regulation of hepatic cytochrome P4501A by indole-3-carbinol: transient induction with continuous feeding in rainbow trout. Food Chem Toxicol. 1995 Feb;33(2):111–120. doi: 10.1016/0278-6915(94)00117-7. [DOI] [PubMed] [Google Scholar]
  116. Takahashi N., Dashwood R. H., Bjeldanes L. F., Williams D. E., Bailey G. S. Mechanisms of indole-3-carbinol (I3C) anticarcinogenesis: inhibition of aflatoxin B1-DNA adduction and mutagenesis by I3C acid condensation products. Food Chem Toxicol. 1995 Oct;33(10):851–857. doi: 10.1016/0278-6915(95)00054-6. [DOI] [PubMed] [Google Scholar]
  117. Takahashi N., Stresser D. M., Williams D. E., Bailey G. S. Induction of hepatic CYP1A by indole-3-carbinol in protection against aflatoxin B1 hepatocarcinogenesis in rainbow trout. Food Chem Toxicol. 1995 Oct;33(10):841–850. doi: 10.1016/0278-6915(95)00055-7. [DOI] [PubMed] [Google Scholar]
  118. Thiyagarajah A., Grizzle J. M. Diethylnitrosamine-induced pancreatic neoplasms in the fish Rivulus ocellatus marmoratus. J Natl Cancer Inst. 1986 Jul;77(1):141–147. [PubMed] [Google Scholar]
  119. Ueng Y. F., Shimada T., Yamazaki H., Guengerich F. P. Oxidation of aflatoxin B1 by bacterial recombinant human cytochrome P450 enzymes. Chem Res Toxicol. 1995 Mar;8(2):218–225. doi: 10.1021/tx00044a006. [DOI] [PubMed] [Google Scholar]
  120. Valsta L. M., Hendricks J. D., Bailey G. S. The significance of glutathione conjugation for aflatoxin B1 metabolism in rainbow trout and coho salmon. Food Chem Toxicol. 1988 Feb;26(2):129–135. doi: 10.1016/0278-6915(88)90109-3. [DOI] [PubMed] [Google Scholar]
  121. Wales J. H., Sinnhuber R. O., Hendricks J. D., Nixon J. E., Eisele T. A. Aflatoxin B1 induction of hepatocellular carcinoma in the embryos of rainbow trout (Salmo gairdneri). J Natl Cancer Inst. 1978 May;60(5):1133–1139. doi: 10.1093/jnci/60.5.1133. [DOI] [PubMed] [Google Scholar]
  122. Williams D. E., Buhler D. R. Benzo[a]pyrene-hydroxylase catalyzed by purified isozymes of cytochrome P-450 from beta-naphthoflavone-fed rainbow trout. Biochem Pharmacol. 1984 Dec 1;33(23):3743–3753. doi: 10.1016/0006-2952(84)90035-2. [DOI] [PubMed] [Google Scholar]
  123. Williams D. E., Buhler D. R. Comparative properties of purified cytochrome P-448 from beta-naphthoflavone treated rats and rainbow trout. Comp Biochem Physiol C. 1983;75(1):25–32. doi: 10.1016/0742-8413(83)90006-3. [DOI] [PubMed] [Google Scholar]
  124. Williams D. E., Buhler D. R. Purification of cytochromes P-448 from beta-naphthoflavone-treated rainbow trout. Biochim Biophys Acta. 1982 Aug 27;717(3):398–404. doi: 10.1016/0304-4165(82)90280-x. [DOI] [PubMed] [Google Scholar]
  125. Williams D. E., Buhler D. R. Purified form of cytochrome P-450 from rainbow trout with high activity toward conversion of aflatoxin B1 to aflatoxin B1-2,3-epoxide. Cancer Res. 1983 Oct;43(10):4752–4756. [PubMed] [Google Scholar]
  126. Williams D. E., Masters B. S., Lech J. J., Buhler D. R. Sex differences in cytochrome P-450 isozyme composition and activity in kidney microsomes of mature rainbow trout. Biochem Pharmacol. 1986 Jun 15;35(12):2017–2023. doi: 10.1016/0006-2952(86)90735-5. [DOI] [PubMed] [Google Scholar]
  127. Williams D. E., Okita R. T., Buhler D. R., Masters B. S. Regiospecific hydroxylation of lauric acid at the (omega-1) position by hepatic and kidney microsomal cytochromes P-450 from rainbow trout. Arch Biochem Biophys. 1984 Jun;231(2):503–510. doi: 10.1016/0003-9861(84)90414-4. [DOI] [PubMed] [Google Scholar]
  128. Wolff T., Strecker M. Endogenous and exogenous factors modifying the activity of human liver cytochrome P-450 enzymes. Exp Toxicol Pathol. 1992 Sep;44(5):263–271. doi: 10.1016/S0940-2993(11)80241-1. [DOI] [PubMed] [Google Scholar]
  129. Wrighton S. A., Vandenbranden M., Stevens J. C., Shipley L. A., Ring B. J., Rettie A. E., Cashman J. R. In vitro methods for assessing human hepatic drug metabolism: their use in drug development. Drug Metab Rev. 1993;25(4):453–484. doi: 10.3109/03602539308993982. [DOI] [PubMed] [Google Scholar]
  130. Yoo J. S., Guengerich F. P., Yang C. S. Metabolism of N-nitrosodialkylamines by human liver microsomes. Cancer Res. 1988 Mar 15;48(6):1499–1504. [PubMed] [Google Scholar]
  131. Yoo J. S., Ishizaki H., Yang C. S. Roles of cytochrome P450IIE1 in the dealkylation and denitrosation of N-nitrosodimethylamine and N-nitrosodiethylamine in rat liver microsomes. Carcinogenesis. 1990 Dec;11(12):2239–2243. doi: 10.1093/carcin/11.12.2239. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES