Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Oct 1;25(19):3751–3759. doi: 10.1093/nar/25.19.3751

The mechanism of U insertion/deletion RNA editing in kinetoplastid mitochondria.

J D Alfonzo 1, O Thiemann 1, L Simpson 1
PMCID: PMC146959  PMID: 9380494

Abstract

Recent advances in in vitrosystems and identification of putative enzymatic activities have led to the acceptance of a modified 'enzyme cascade' model for U insertion/deletion RNA editing in kinetoplastid mitochondria. Models involving the transfer of uridines (Us) from the 3'-end of gRNA to the editing site appear to be untenable. Two types of in vitrosystems have been reported: (i) a gRNA-independent U insertion activity that is dependent on the secondary structure of the mRNA; (ii) a gRNA-dependent U insertion activity that requires addition of a gRNA that can form an anchor duplex with the pre-edited mRNA and which contains guiding A and G nucleotides to base pair with the added Us. In the case of the gRNA-mediated reaction, the precise site of cleavage is at the end of the gRNA-mRNA anchor duplex, as predicted by the original model. The model has been modified to include the addition of multiple Us to the 3'-end of the 5'-cleavage fragment, followed by the formation of base pairs with the guiding nucleotides and trimming back of the single-stranded oligo(U) 3'-overhang. The two fragments, which are held together by the gRNA 'splint', are then ligated. Circumstantial in vitroevidence for involvement of an RNA ligase and an endoribonuclease, which are components of a 20S complex, was obtained. Efforts are underway in several laboratories to isolate and characterize specific components of the editing machinery.

Full Text

The Full Text of this article is available as a PDF (369.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler B. K., Harris M. E., Bertrand K. I., Hajduk S. L. Modification of Trypanosoma brucei mitochondrial rRNA by posttranscriptional 3' polyuridine tail formation. Mol Cell Biol. 1991 Dec;11(12):5878–5884. doi: 10.1128/mcb.11.12.5878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avila H. A., Simpson L. Organization and complexity of minicircle-encoded guide RNAs in Trypanosoma cruzi. RNA. 1995 Nov;1(9):939–947. [PMC free article] [PubMed] [Google Scholar]
  3. Bakalara N., Simpson A. M., Simpson L. The Leishmania kinetoplast-mitochondrion contains terminal uridylyltransferase and RNA ligase activities. J Biol Chem. 1989 Nov 5;264(31):18679–18686. [PubMed] [Google Scholar]
  4. Benne R. RNA editing in trypanosomes. Eur J Biochem. 1994 Apr 1;221(1):9–23. doi: 10.1111/j.1432-1033.1994.tb18710.x. [DOI] [PubMed] [Google Scholar]
  5. Benne R., Van den Burg J., Brakenhoff J. P., Sloof P., Van Boom J. H., Tromp M. C. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 1986 Sep 12;46(6):819–826. doi: 10.1016/0092-8674(86)90063-2. [DOI] [PubMed] [Google Scholar]
  6. Birkenmeyer L., Sugisaki H., Ray D. S. The majority of minicircle DNA in Crithidia fasciculata strain CF-C1 is of a single class with nearly homogeneous DNA sequence. Nucleic Acids Res. 1985 Oct 11;13(19):7107–7118. doi: 10.1093/nar/13.19.7107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blum B., Bakalara N., Simpson L. A model for RNA editing in kinetoplastid mitochondria: "guide" RNA molecules transcribed from maxicircle DNA provide the edited information. Cell. 1990 Jan 26;60(2):189–198. doi: 10.1016/0092-8674(90)90735-w. [DOI] [PubMed] [Google Scholar]
  8. Blum B., Simpson L. Formation of guide RNA/messenger RNA chimeric molecules in vitro, the initial step of RNA editing, is dependent on an anchor sequence. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11944–11948. doi: 10.1073/pnas.89.24.11944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Blum B., Simpson L. Guide RNAs in kinetoplastid mitochondria have a nonencoded 3' oligo(U) tail involved in recognition of the preedited region. Cell. 1990 Jul 27;62(2):391–397. doi: 10.1016/0092-8674(90)90375-o. [DOI] [PubMed] [Google Scholar]
  10. Blum B., Sturm N. R., Simpson A. M., Simpson L. Chimeric gRNA-mRNA molecules with oligo(U) tails covalently linked at sites of RNA editing suggest that U addition occurs by transesterification. Cell. 1991 May 17;65(4):543–550. doi: 10.1016/0092-8674(91)90087-f. [DOI] [PubMed] [Google Scholar]
  11. Byrne E. M., Connell G. J., Simpson L. Guide RNA-directed uridine insertion RNA editing in vitro. EMBO J. 1996 Dec 2;15(23):6758–6765. [PMC free article] [PubMed] [Google Scholar]
  12. Campbell D. A., Spithill T. W., Samaras N., Simpson A. M., Simpson L. Sequence of a cDNA for the ND1 gene from Leishmania major: potential uridine addition in the polyadenosine tail. Mol Biochem Parasitol. 1989 Sep;36(2):197–199. doi: 10.1016/0166-6851(89)90192-8. [DOI] [PubMed] [Google Scholar]
  13. Carpenter L. R., Englund P. T. Kinetoplast maxicircle DNA replication in Crithidia fasciculata and Trypanosoma brucei. Mol Cell Biol. 1995 Dec;15(12):6794–6803. doi: 10.1128/mcb.15.12.6794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cech T. R. RNA editing: world's smallest introns? Cell. 1991 Feb 22;64(4):667–669. doi: 10.1016/0092-8674(91)90494-j. [DOI] [PubMed] [Google Scholar]
  15. Connell G. J., Byrne E. M., Simpson L. Guide RNA-independent and guide RNA-dependent uridine insertion into cytochrome b mRNA in a mitochondrial lysate from Leishmania tarentolae. Role of RNA secondary structure. J Biol Chem. 1997 Feb 14;272(7):4212–4218. doi: 10.1074/jbc.272.7.4212. [DOI] [PubMed] [Google Scholar]
  16. Corell R. A., Feagin J. E., Riley G. R., Strickland T., Guderian J. A., Myler P. J., Stuart K. Trypanosoma brucei minicircles encode multiple guide RNAs which can direct editing of extensively overlapping sequences. Nucleic Acids Res. 1993 Sep 11;21(18):4313–4320. doi: 10.1093/nar/21.18.4313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Corell R. A., Read L. K., Riley G. R., Nellissery J. K., Allen T. E., Kable M. L., Wachal M. D., Seiwert S. D., Myler P. J., Stuart K. D. Complexes from Trypanosoma brucei that exhibit deletion editing and other editing-associated properties. Mol Cell Biol. 1996 Apr;16(4):1410–1418. doi: 10.1128/mcb.16.4.1410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Cruz-Reyes J., Sollner-Webb B. Trypanosome U-deletional RNA editing involves guide RNA-directed endonuclease cleavage, terminal U exonuclease, and RNA ligase activities. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8901–8906. doi: 10.1073/pnas.93.17.8901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Degrave W., Fragoso S. P., Britto C., van Heuverswyn H., Kidane G. Z., Cardoso M. A., Mueller R. U., Simpson L., Morel C. M. Peculiar sequence organization of kinetoplast DNA minicircles from Trypanosoma cruzi. Mol Biochem Parasitol. 1988 Jan 1;27(1):63–70. doi: 10.1016/0166-6851(88)90025-4. [DOI] [PubMed] [Google Scholar]
  20. Feagin J. E., Abraham J. M., Stuart K. Extensive editing of the cytochrome c oxidase III transcript in Trypanosoma brucei. Cell. 1988 May 6;53(3):413–422. doi: 10.1016/0092-8674(88)90161-4. [DOI] [PubMed] [Google Scholar]
  21. Feagin J. E., Jasmer D. P., Stuart K. Developmentally regulated addition of nucleotides within apocytochrome b transcripts in Trypanosoma brucei. Cell. 1987 May 8;49(3):337–345. doi: 10.1016/0092-8674(87)90286-8. [DOI] [PubMed] [Google Scholar]
  22. Frech G. C., Bakalara N., Simpson L., Simpson A. M. In vitro RNA editing-like activity in a mitochondrial extract from Leishmania tarentolae. EMBO J. 1995 Jan 3;14(1):178–187. doi: 10.1002/j.1460-2075.1995.tb06988.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Frech G. C., Simpson L. Uridine insertion into preedited mRNA by a mitochondrial extract from Leishmania tarentolae: stereochemical evidence for the enzyme cascade model. Mol Cell Biol. 1996 Aug;16(8):4584–4589. doi: 10.1128/mcb.16.8.4584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hajduk S. L., Harris M. E., Pollard V. W. RNA editing in kinetoplastid mitochondria. FASEB J. 1993 Jan;7(1):54–63. doi: 10.1096/fasebj.7.1.8422975. [DOI] [PubMed] [Google Scholar]
  25. Harnett S. P., Lowe G., Tansley G. A stereochemical study of the mechanism of activation of donor oligonucleotides by RNA ligase from bacteriophage T4 infected Escherichia coli. Biochemistry. 1985 Dec 3;24(25):7446–7449. doi: 10.1021/bi00346a062. [DOI] [PubMed] [Google Scholar]
  26. Harris M. E., Hajduk S. L. Kinetoplastid RNA editing: in vitro formation of cytochrome b gRNA-mRNA chimeras from synthetic substrate RNAs. Cell. 1992 Mar 20;68(6):1091–1099. doi: 10.1016/0092-8674(92)90080-v. [DOI] [PubMed] [Google Scholar]
  27. Harris M., Decker C., Sollner-Webb B., Hajduk S. Specific cleavage of pre-edited mRNAs in trypanosome mitochondrial extracts. Mol Cell Biol. 1992 Jun;12(6):2591–2598. doi: 10.1128/mcb.12.6.2591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kable M. L., Seiwert S. D., Heidmann S., Stuart K. RNA editing: a mechanism for gRNA-specified uridylate insertion into precursor mRNA. Science. 1996 Aug 30;273(5279):1189–1195. doi: 10.1126/science.273.5279.1189. [DOI] [PubMed] [Google Scholar]
  29. Koslowsky D. J., Bhat G. J., Perrollaz A. L., Feagin J. E., Stuart K. The MURF3 gene of T. brucei contains multiple domains of extensive editing and is homologous to a subunit of NADH dehydrogenase. Cell. 1990 Sep 7;62(5):901–911. doi: 10.1016/0092-8674(90)90265-g. [DOI] [PubMed] [Google Scholar]
  30. Koslowsky D. J., Göringer H. U., Morales T. H., Stuart K. In vitro guide RNA/mRNA chimaera formation in Trypanosoma brucei RNA editing. Nature. 1992 Apr 30;356(6372):807–809. doi: 10.1038/356807a0. [DOI] [PubMed] [Google Scholar]
  31. Köller J., Müller U. F., Schmid B., Missel A., Kruft V., Stuart K., Göringer H. U. Trypanosoma brucei gBP21. An arginine-rich mitochondrial protein that binds to guide RNA with high affinity. J Biol Chem. 1997 Feb 7;272(6):3749–3757. doi: 10.1074/jbc.272.6.3749. [DOI] [PubMed] [Google Scholar]
  32. Köller J., Nörskau G., Paul A. S., Stuart K., Göringer H. U. Different Trypanosoma brucei guide RNA molecules associate with an identical complement of mitochondrial proteins in vitro. Nucleic Acids Res. 1994 Jun 11;22(11):1988–1995. doi: 10.1093/nar/22.11.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Landweber L. F. The evolution of RNA editing in kinetoplastid protozoa. Biosystems. 1992;28(1-3):41–45. doi: 10.1016/0303-2647(92)90006-k. [DOI] [PubMed] [Google Scholar]
  34. Lukes J., Arts G. J., van den Burg J., de Haan A., Opperdoes F., Sloof P., Benne R. Novel pattern of editing regions in mitochondrial transcripts of the cryptobiid Trypanoplasma borreli. EMBO J. 1994 Nov 1;13(21):5086–5098. doi: 10.1002/j.1460-2075.1994.tb06838.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Maslov D. A., Avila H. A., Lake J. A., Simpson L. Evolution of RNA editing in kinetoplastid protozoa. Nature. 1994 Mar 24;368(6469):345–348. doi: 10.1038/368345a0. [DOI] [PubMed] [Google Scholar]
  36. Maslov D. A., Simpson L. RNA editing and mitochondrial genomic organization in the cryptobiid kinetoplastid protozoan Trypanoplasma borreli. Mol Cell Biol. 1994 Dec;14(12):8174–8182. doi: 10.1128/mcb.14.12.8174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Maslov D. A., Simpson L. The polarity of editing within a multiple gRNA-mediated domain is due to formation of anchors for upstream gRNAs by downstream editing. Cell. 1992 Aug 7;70(3):459–467. doi: 10.1016/0092-8674(92)90170-h. [DOI] [PubMed] [Google Scholar]
  38. Missel A., Göringer H. U. Trypanosoma brucei mitochondria contain RNA helicase activity. Nucleic Acids Res. 1994 Oct 11;22(20):4050–4056. doi: 10.1093/nar/22.20.4050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Missel A., Nörskau G., Shu H. H., Göringer H. U. A putative RNA helicase of the DEAD box family from Trypanosoma brucei. Mol Biochem Parasitol. 1995 Dec;75(1):123–126. doi: 10.1016/0166-6851(95)02511-1. [DOI] [PubMed] [Google Scholar]
  40. Peris M., Frech G. C., Simpson A. M., Bringaud F., Byrne E., Bakker A., Simpson L. Characterization of two classes of ribonucleoprotein complexes possibly involved in RNA editing from Leishmania tarentolae mitochondria. EMBO J. 1994 Apr 1;13(7):1664–1672. doi: 10.1002/j.1460-2075.1994.tb06430.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Peris M., Simpson A. M., Grunstein J., Liliental J. E., Frech G. C., Simpson L. Native gel analysis of ribonucleoprotein complexes from a Leishmania tarentolae mitochondrial extract. Mol Biochem Parasitol. 1997 Mar;85(1):9–24. doi: 10.1016/s0166-6851(96)02795-8. [DOI] [PubMed] [Google Scholar]
  42. Piller K. J., Decker C. J., Rusché L. N., Sollner-Webb B. Trypanosoma brucei mitochondrial guide RNA-mRNA chimera-forming activity cofractionates with an editing-domain-specific endonuclease and RNA ligase and is mimicked by heterologous nuclease and RNA ligase. Mol Cell Biol. 1995 Jun;15(6):2925–2932. doi: 10.1128/mcb.15.6.2925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Piller K. J., Rusché L. N., Cruz-Reyes J., Sollner-Webb B. Resolution of the RNA editing gRNA-directed endonuclease from two other endonucleases of Trypanosoma brucei mitochondria. RNA. 1997 Mar;3(3):279–290. [PMC free article] [PubMed] [Google Scholar]
  44. Pollard V. W., Harris M. E., Hajduk S. L. Native mRNA editing complexes from Trypanosoma brucei mitochondria. EMBO J. 1992 Dec;11(12):4429–4438. doi: 10.1002/j.1460-2075.1992.tb05543.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Pollard V. W., Rohrer S. P., Michelotti E. F., Hancock K., Hajduk S. L. Organization of minicircle genes for guide RNAs in Trypanosoma brucei. Cell. 1990 Nov 16;63(4):783–790. doi: 10.1016/0092-8674(90)90144-4. [DOI] [PubMed] [Google Scholar]
  46. Pérez-Morga D. L., Englund P. T. The attachment of minicircles to kinetoplast DNA networks during replication. Cell. 1993 Aug 27;74(4):703–711. doi: 10.1016/0092-8674(93)90517-t. [DOI] [PubMed] [Google Scholar]
  47. Ray D. S., Hines J. C., Sugisaki H., Sheline C. kDNA minicircles of the major sequence class of C. fasciculata contain a single region of bent helix widely separated from the two origins of replication. Nucleic Acids Res. 1986 Oct 24;14(20):7953–7965. doi: 10.1093/nar/14.20.7953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Read L. K., Göringer H. U., Stuart K. Assembly of mitochondrial ribonucleoprotein complexes involves specific guide RNA (gRNA)-binding proteins and gRNA domains but does not require preedited mRNA. Mol Cell Biol. 1994 Apr;14(4):2629–2639. doi: 10.1128/mcb.14.4.2629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Read L. K., Stankey K. A., Fish W. R., Muthiani A. M., Stuart K. Developmental regulation of RNA editing and polyadenylation in four life cycle stages of Trypanosoma congolense. Mol Biochem Parasitol. 1994 Dec;68(2):297–306. doi: 10.1016/0166-6851(94)90174-0. [DOI] [PubMed] [Google Scholar]
  50. Riley G. R., Corell R. A., Stuart K. Multiple guide RNAs for identical editing of Trypanosoma brucei apocytochrome b mRNA have an unusual minicircle location and are developmentally regulated. J Biol Chem. 1994 Feb 25;269(8):6101–6108. [PubMed] [Google Scholar]
  51. Robinson D. R., Gull K. The configuration of DNA replication sites within the Trypanosoma brucei kinetoplast. J Cell Biol. 1994 Aug;126(3):641–648. doi: 10.1083/jcb.126.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Rusché L. N., Cruz-Reyes J., Piller K. J., Sollner-Webb B. Purification of a functional enzymatic editing complex from Trypanosoma brucei mitochondria. EMBO J. 1997 Jul 1;16(13):4069–4081. doi: 10.1093/emboj/16.13.4069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Rusché L. N., Piller K. J., Sollner-Webb B. Guide RNA-mRNA chimeras, which are potential RNA editing intermediates, are formed by endonuclease and RNA ligase in a trypanosome mitochondrial extract. Mol Cell Biol. 1995 Jun;15(6):2933–2941. doi: 10.1128/mcb.15.6.2933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sabatini R., Hajduk S. L. RNA ligase and its involvement in guide RNA/mRNA chimera formation. Evidence for a cleavage-ligation mechanism of Trypanosoma brucei mRNA editing. J Biol Chem. 1995 Mar 31;270(13):7233–7240. doi: 10.1074/jbc.270.13.7233. [DOI] [PubMed] [Google Scholar]
  55. Schmid B., Riley G. R., Stuart K., Göringer H. U. The secondary structure of guide RNA molecules from Trypanosoma brucei. Nucleic Acids Res. 1995 Aug 25;23(16):3093–3102. doi: 10.1093/nar/23.16.3093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Seiwert S. D., Heidmann S., Stuart K. Direct visualization of uridylate deletion in vitro suggests a mechanism for kinetoplastid RNA editing. Cell. 1996 Mar 22;84(6):831–841. doi: 10.1016/s0092-8674(00)81062-4. [DOI] [PubMed] [Google Scholar]
  57. Seiwert S. D., Stuart K. RNA editing: transfer of genetic information from gRNA to precursor mRNA in vitro. Science. 1994 Oct 7;266(5182):114–117. doi: 10.1126/science.7524149. [DOI] [PubMed] [Google Scholar]
  58. Simpson A. M., Bakalara N., Simpson L. A ribonuclease activity is activated by heparin or by digestion with proteinase K in mitochondrial extracts of Leishmania tarentolae. J Biol Chem. 1992 Apr 5;267(10):6782–6788. [PubMed] [Google Scholar]
  59. Simpson L., Emeson R. B. RNA editing. Annu Rev Neurosci. 1996;19:27–52. doi: 10.1146/annurev.ne.19.030196.000331. [DOI] [PubMed] [Google Scholar]
  60. Simpson L. Kinetoplast DNA in trypanosomid flagellates. Int Rev Cytol. 1986;99:119–179. doi: 10.1016/s0074-7696(08)61426-6. [DOI] [PubMed] [Google Scholar]
  61. Simpson L., Maslov D. A. RNA editing and the evolution of parasites. Science. 1994 Jun 24;264(5167):1870–1871. doi: 10.1126/science.8009214. [DOI] [PubMed] [Google Scholar]
  62. Simpson L., Shaw J. RNA editing and the mitochondrial cryptogenes of kinetoplastid protozoa. Cell. 1989 May 5;57(3):355–366. doi: 10.1016/0092-8674(89)90911-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Simpson L. The genomic organization of guide RNA genes in kinetoplastid protozoa: several conundrums and their solutions. Mol Biochem Parasitol. 1997 Jun;86(2):133–141. doi: 10.1016/s0166-6851(97)00037-6. [DOI] [PubMed] [Google Scholar]
  64. Simpson L. The mitochondrial genome of kinetoplastid protozoa: genomic organization, transcription, replication, and evolution. Annu Rev Microbiol. 1987;41:363–382. doi: 10.1146/annurev.mi.41.100187.002051. [DOI] [PubMed] [Google Scholar]
  65. Simpson L., Thiemann O. H. Sense from nonsense: RNA editing in mitochondria of kinetoplastid protozoa and slime molds. Cell. 1995 Jun 16;81(6):837–840. doi: 10.1016/0092-8674(95)90003-9. [DOI] [PubMed] [Google Scholar]
  66. Sollner-Webb B. RNA editing. Guides to experiments. Nature. 1992 Apr 30;356(6372):743–744. doi: 10.1038/356743a0. [DOI] [PubMed] [Google Scholar]
  67. Steinert M., Van Assel S. Sequence heterogeneity in kinetoplast DNA: reassociation kinetics. Plasmid. 1980 Jan;3(1):7–17. doi: 10.1016/s0147-619x(80)90030-x. [DOI] [PubMed] [Google Scholar]
  68. Sturm N. R., Simpson L. Kinetoplast DNA minicircles encode guide RNAs for editing of cytochrome oxidase subunit III mRNA. Cell. 1990 Jun 1;61(5):879–884. doi: 10.1016/0092-8674(90)90198-n. [DOI] [PubMed] [Google Scholar]
  69. Sturm N. R., Simpson L. Leishmania tarentolae minicircles of different sequence classes encode single guide RNAs located in the variable region approximately 150 bp from the conserved region. Nucleic Acids Res. 1991 Nov 25;19(22):6277–6281. doi: 10.1093/nar/19.22.6277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Thiemann O. H., Maslov D. A., Simpson L. Disruption of RNA editing in Leishmania tarentolae by the loss of minicircle-encoded guide RNA genes. EMBO J. 1994 Dec 1;13(23):5689–5700. doi: 10.1002/j.1460-2075.1994.tb06907.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Xu C. W., Hines J. C., Engel M. L., Russell D. G., Ray D. S. Nucleus-encoded histone H1-like proteins are associated with kinetoplast DNA in the trypanosomatid Crithidia fasciculata. Mol Cell Biol. 1996 Feb;16(2):564–576. doi: 10.1128/mcb.16.2.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Xu C., Ray D. S. Isolation of proteins associated with kinetoplast DNA networks in vivo. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1786–1789. doi: 10.1073/pnas.90.5.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Yasuhira S., Simpson L. Guide RNAs and guide RNA genes in the cryptobiid kinetoplastid protozoan, Trypanoplasma borreli. RNA. 1996 Nov;2(11):1153–1160. [PMC free article] [PubMed] [Google Scholar]
  74. Yasuhira S., Simpson L. Minicircle-encoded guide RNAs from Crithidia fasciculata. RNA. 1995 Aug;1(6):634–643. [PMC free article] [PubMed] [Google Scholar]
  75. van der Spek H., Arts G. J., Zwaal R. R., van den Burg J., Sloof P., Benne R. Conserved genes encode guide RNAs in mitochondria of Crithidia fasciculata. EMBO J. 1991 May;10(5):1217–1224. doi: 10.1002/j.1460-2075.1991.tb08063.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES