Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Oct 1;25(19):3944–3949. doi: 10.1093/nar/25.19.3944

Localization of the major ethidium bromide binding site on tRNA.

W C Chu 1, J C Liu 1, J Horowitz 1
PMCID: PMC146966  PMID: 9380521

Abstract

Binding of ethidium bromide to Escherichia coli tRNAVal and an RNA minihelix based on the acceptor stem and T-arm of tRNAVal was investigated by 19F and 1H NMR spectroscopy of RNAs labeled with fluorine by incorporation of 5-fluorouracil. Ethidium bromide selectively intercalates into the acceptor stem of the tRNAVal. More than one ethidium bromide binding site is found in the acceptor stem, the strongest between base pairs A6:U67 and U7:A66. 19F and 1H spectra of the 5-fluorouracil-substituted minihelix RNA indicate that the molecule exists in solution as a 12 base-paired stem and a single-stranded loop. Ethidium bromide no longer intercalates between base pairs corresponding to the tRNAVal acceptor stem in this molecule. Instead, it intercalates between base pairs at the bottom of the long stem-loop structure. These observations suggest that ethidium bromide has a preferred intercalation site close to the base of an RNA helical stem.

Full Text

The Full Text of this article is available as a PDF (115.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboul-ela F., Nikonowicz E. P., Pardi A. Distinguishing between duplex and hairpin forms of RNA by 15N-1H heteronuclear NMR. FEBS Lett. 1994 Jun 27;347(2-3):261–264. doi: 10.1016/0014-5793(94)00564-8. [DOI] [PubMed] [Google Scholar]
  2. Bauer W., Vinograd J. The interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV40 DNA in the presence and absence of dye. J Mol Biol. 1968 Apr 14;33(1):141–171. doi: 10.1016/0022-2836(68)90286-6. [DOI] [PubMed] [Google Scholar]
  3. Bittman R. Studies of the binding of ethidium bromide to transfer ribonucleic acid: absorption, fluorescence, ultracentrifugation and kinetic investigations. J Mol Biol. 1969 Dec 14;46(2):251–268. doi: 10.1016/0022-2836(69)90420-3. [DOI] [PubMed] [Google Scholar]
  4. Chu W. C., Feiz V., Derrick W. B., Horowitz J. Fluorine-19 nuclear magnetic resonance as a probe of the solution structure of mutants of 5-fluorouracil-substituted Escherichia coli valine tRNA. J Mol Biol. 1992 Oct 20;227(4):1164–1172. doi: 10.1016/0022-2836(92)90528-r. [DOI] [PubMed] [Google Scholar]
  5. Chu W. C., Horowitz J. 19F NMR of 5-fluorouracil-substituted transfer RNA transcribed in vitro: resonance assignment of fluorouracil-guanine base pairs. Nucleic Acids Res. 1989 Sep 25;17(18):7241–7252. doi: 10.1093/nar/17.18.7241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chu W. C., Horowitz J. Fluorine-19 NMR studies of the thermal unfolding of 5-fluorouracil-substituted Escherichia coli valine transfer RNA. FEBS Lett. 1991 Dec 16;295(1-3):159–162. doi: 10.1016/0014-5793(91)81408-z. [DOI] [PubMed] [Google Scholar]
  7. Chu W. C., Horowitz J. Recognition of Escherichia coli valine transfer RNA by its cognate synthetase: a fluorine-19 NMR study. Biochemistry. 1991 Feb 12;30(6):1655–1663. doi: 10.1021/bi00220a031. [DOI] [PubMed] [Google Scholar]
  8. Chu W. C., Kintanar A., Horowitz J. Correlations between fluorine-19 nuclear magnetic resonance chemical shift and the secondary and tertiary structure of 5-fluorouracil-substituted tRNA. J Mol Biol. 1992 Oct 20;227(4):1173–1181. doi: 10.1016/0022-2836(92)90529-s. [DOI] [PubMed] [Google Scholar]
  9. DICKINSON L., CHANTRILL B. H., INKLEY G. W., THOMPSON M. J. The antiviral action of phenanthridinium compounds. Br J Pharmacol Chemother. 1953 Jun;8(2):139–142. doi: 10.1111/j.1476-5381.1953.tb00767.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eron L. J., McAuslan B. R. Inhibition of deoxyribonuclease action by actinomycin D and ethidium bromide. Biochim Biophys Acta. 1966 Mar 21;114(3):633–636. doi: 10.1016/0005-2787(66)90113-4. [DOI] [PubMed] [Google Scholar]
  11. Goldfield E. M., Luxon B. A., Bowie V., Gorenstein D. G. Phosphorus-31 nuclear magnetic resonance of ethidium complexes with ribonucleic acid model systems and phenylalanine-accepting transfer ribonucleic acid. Biochemistry. 1983 Jul 5;22(14):3336–3344. doi: 10.1021/bi00283a006. [DOI] [PubMed] [Google Scholar]
  12. Gollnick P., Hardin C. C., Horowitz J. 19F nuclear magnetic resonance as a probe of anticodon structure in 5-fluorouracil-substituted Escherichia coli transfer RNA. J Mol Biol. 1987 Oct 5;197(3):571–584. doi: 10.1016/0022-2836(87)90565-1. [DOI] [PubMed] [Google Scholar]
  13. Gollnick P., Hardin C. C., Horowitz J. Fluorine-19 nuclear magnetic resonance study of codon-anticodon interaction in 5-fluorouracil-substituted E. coli transfer RNAs. Nucleic Acids Res. 1986 Jun 11;14(11):4659–4672. doi: 10.1093/nar/14.11.4659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hardin C. C., Gollnick P., Horowitz J. Partial assignment of resonances in the 19F nuclear magnetic resonance spectra of 5-fluorouracil-substituted transfer RNAs. Biochemistry. 1988 Jan 12;27(1):487–495. doi: 10.1021/bi00401a070. [DOI] [PubMed] [Google Scholar]
  15. Hardin C. C., Gollnick P., Kallenbach N. R., Cohn M., Horowitz J. Fluorine-19 nuclear magnetic resonance studies of the structure of 5-fluorouracil-substituted Escherichia coli transfer RNA. Biochemistry. 1986 Sep 23;25(19):5699–5709. doi: 10.1021/bi00367a053. [DOI] [PubMed] [Google Scholar]
  16. Holbrook S. R., Sussman J. L., Warrant R. W., Kim S. H. Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications. J Mol Biol. 1978 Aug 25;123(4):631–660. doi: 10.1016/0022-2836(78)90210-3. [DOI] [PubMed] [Google Scholar]
  17. Horowitz J., Ofengand J., Daniel W. E., Jr, Cohn M. 19F nuclear magnetic resonance of 5-fluorouridine-substituted tRNA1Val from Escherichia coli. J Biol Chem. 1977 Jun 25;252(12):4418–4420. [PubMed] [Google Scholar]
  18. Jones C. R., Bolton P. H., Kearns D. R. Ethidium bromide binding to transfer RNA: transfer RNA as a model system for studying drug-RNA interactions. Biochemistry. 1978 Feb 21;17(4):601–607. doi: 10.1021/bi00597a007. [DOI] [PubMed] [Google Scholar]
  19. Jones C. R., Kearns D. R. Identification of a unique ethidium bromide binding site on yeast tRNAPhe by high resolution (300 MHz) nuclear magnetic resonance. Biochemistry. 1975 Jun 17;14(12):2660–2665. doi: 10.1021/bi00683a016. [DOI] [PubMed] [Google Scholar]
  20. Kintanar A., Metzler C. M., Metzler D. E., Scott R. D. NMR observation of exchangeable protons of pyridoxal phosphate and histidine residues in cytosolic aspartate aminotransferase. J Biol Chem. 1991 Sep 15;266(26):17222–17229. [PubMed] [Google Scholar]
  21. Kintanar A., Yue D., Horowitz J. Effect of nucleoside modifications on the structure and thermal stability of Escherichia coli valine tRNA. Biochimie. 1994;76(12):1192–1204. doi: 10.1016/0300-9084(94)90049-3. [DOI] [PubMed] [Google Scholar]
  22. Kramer F. R., Mills D. R., Cole P. E., Nishihara T., Spiegelman S. Evolution in vitro: sequence and phenotype of a mutant RNA resistant to ethidium bromide. J Mol Biol. 1974 Nov 15;89(4):719–736. doi: 10.1016/0022-2836(74)90047-3. [DOI] [PubMed] [Google Scholar]
  23. Kreishman G. P., Chan S. I., Bauer W. Proton magnetic resonance study of the interaction of ethidium bromide with several uracil residues, uridylyl (3' leads to 5') uridine and polyuridylic acid. J Mol Biol. 1971 Oct 14;61(1):45–58. doi: 10.1016/0022-2836(71)90205-1. [DOI] [PubMed] [Google Scholar]
  24. Liebman M., Rubin J., Sundaralingam M. Nonintercalative binding of ethidium bromide to nucleic acids: crystal structure of an ethidium--tRNA molecular complex. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4821–4825. doi: 10.1073/pnas.74.11.4821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Liu M., Horowitz J. In vitro transcription of transfer RNAs with 3'-end modifications. Biotechniques. 1993 Aug;15(2):264–266. [PubMed] [Google Scholar]
  26. Lurquin P., Buchet-Mahieu J. Biological activity of ethidium bromide - transfer RNA complexes. FEBS Lett. 1971 Jan 30;12(5):244–248. doi: 10.1016/0014-5793(71)80188-6. [DOI] [PubMed] [Google Scholar]
  27. Nakamaye K. L., Eckstein F. Inhibition of restriction endonuclease Nci I cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucleic Acids Res. 1986 Dec 22;14(24):9679–9698. doi: 10.1093/nar/14.24.9679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Neidle S., Abraham Z. Structural and sequence-dependent aspects of drug intercalation into nucleic acids. CRC Crit Rev Biochem. 1984;17(1):73–121. doi: 10.3109/10409238409110270. [DOI] [PubMed] [Google Scholar]
  29. Nielsen P. E. Conformational changes of yeast tRNAPhe upon interaction with intercalators probed by nuclease digestion. Biochim Biophys Acta. 1981 Aug 27;655(1):89–95. doi: 10.1016/0005-2787(81)90070-8. [DOI] [PubMed] [Google Scholar]
  30. Sander E. G., Deyrup C. L. The effect of bisulfite on the dehalogenation of 5-chloro-, 5-bromo-, and 5-iodouracil. Arch Biochem Biophys. 1972 Jun;150(2):600–605. doi: 10.1016/0003-9861(72)90079-3. [DOI] [PubMed] [Google Scholar]
  31. Tao T., Nelson J. H., Cantor C. R. Conformational studies on transfer ribonucleic acid. Fluorescence lifetime and nanosecond depolarization measurements on bound ethidium bromidee. Biochemistry. 1970 Sep 1;9(18):3514–3524. doi: 10.1021/bi00820a004. [DOI] [PubMed] [Google Scholar]
  32. WARING M. J. COMPLEX FORMATION WITH DNA AND INHIBITION OF ESCHERICHIA COLI RNA POLYMERASE BY ETHIDIUM BROMIDE. Biochim Biophys Acta. 1964 Jun 22;87:358–361. doi: 10.1016/0926-6550(64)90238-5. [DOI] [PubMed] [Google Scholar]
  33. Waring M. J. Complex formation between ethidium bromide and nucleic acids. J Mol Biol. 1965 Aug;13(1):269–282. doi: 10.1016/s0022-2836(65)80096-1. [DOI] [PubMed] [Google Scholar]
  34. Wells B. D., Cantor C. R. A strong ethidium binding site in the acceptor stem of most or all transfer RNAs. Nucleic Acids Res. 1977;4(5):1667–1680. doi: 10.1093/nar/4.5.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES