Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Oct 1;25(19):3783–3786. doi: 10.1093/nar/25.19.3783

Solid phase-supported thymine dimers for the construction of dimer-containing DNA by combined chemical and enzymatic synthesis: a potentially general method for the efficient incorporation of modified nucleotides into DNA.

P Ordoukhanian 1, J S Taylor 1
PMCID: PMC146970  PMID: 9380498

Abstract

The ability to study the structure-activity relationships of the cis-syn thymine dimer, the major photoproduct of DNA, has been greatly aided by the availability of a building block suitable for its sequence-specific incorporation into oligonucleotides by standard automated DNA synthesis. Unfortunately, its usefulness is compromised by the fact that it takes six steps to synthesize in low overall yield and, as with all phosphoramidite building blocks, has to be used in great excess over the support in standard automated synthesis. To extend the usefulness of this building block, we have directly coupled it to standard A, C, G and T long chain alkylamine-linked controlled pore glass supports to yield a solid phase-supported dimer. We then demonstrate that 13mers containing a 3'-terminal d(T[cis-syn]TN) group synthesized with this support at 0.2 micromol scale can be efficiently incorporated into longer oligonucleotides by both primer extension with 3'-->5'exonuclease-deficient Klenow fragment or T4 polymerase and dNTPs or by enzymatic ligation with T4 DNA ligase to another oligonucleotide opposite a complementary template. The site specificity and integrity of the cis-syn thymine dimer after both primer extension and ligation was confirmed by cis-syn dimer-specific cleavage with T4 denV endonuclease V. This general approach should be applicable to the synthesis of many types of site-specific nucleic acid modifications and would be of particular use for those for which the required building blocks are expensive or difficult to make.

Full Text

The Full Text of this article is available as a PDF (76.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley G. W., Kushlan D. M. Chemical synthesis of oligodeoxynucleotide dumbbells. Biochemistry. 1991 Mar 19;30(11):2927–2933. doi: 10.1021/bi00225a028. [DOI] [PubMed] [Google Scholar]
  2. Barrio J. R., Barrio M. C., Leonard N. J., England T. E., Uhlenbeck O. C. Synthesis of modified nucleoside 3',5'-bisphosphates and their incorporation into oligoribonucleotides with T4 RNA ligase. Biochemistry. 1978 May 30;17(11):2077–2081. doi: 10.1021/bi00604a009. [DOI] [PubMed] [Google Scholar]
  3. Basu A. K., Essigmann J. M. Site-specifically modified oligodeoxynucleotides as probes for the structural and biological effects of DNA-damaging agents. Chem Res Toxicol. 1988 Jan-Feb;1(1):1–18. doi: 10.1021/tx00001a001. [DOI] [PubMed] [Google Scholar]
  4. Basu A. K., Wood M. L., Niedernhofer L. J., Ramos L. A., Essigmann J. M. Mutagenic and genotoxic effects of three vinyl chloride-induced DNA lesions: 1,N6-ethenoadenine, 3,N4-ethenocytosine, and 4-amino-5-(imidazol-2-yl)imidazole. Biochemistry. 1993 Nov 30;32(47):12793–12801. doi: 10.1021/bi00210a031. [DOI] [PubMed] [Google Scholar]
  5. Clark J. M., Joyce C. M., Beardsley G. P. Novel blunt-end addition reactions catalyzed by DNA polymerase I of Escherichia coli. J Mol Biol. 1987 Nov 5;198(1):123–127. doi: 10.1016/0022-2836(87)90462-1. [DOI] [PubMed] [Google Scholar]
  6. Clark J. M. Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res. 1988 Oct 25;16(20):9677–9686. doi: 10.1093/nar/16.20.9677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Derbyshire V., Freemont P. S., Sanderson M. R., Beese L., Friedman J. M., Joyce C. M., Steitz T. A. Genetic and crystallographic studies of the 3',5'-exonucleolytic site of DNA polymerase I. Science. 1988 Apr 8;240(4849):199–201. doi: 10.1126/science.2832946. [DOI] [PubMed] [Google Scholar]
  8. Dolinnaya N. G., Sokolova N. I., Ashirbekova D. T., Shabarova Z. A. The use of BrCN for assembling modified DNA duplexes and DNA-RNA hybrids; comparison with water-soluble carbodiimide. Nucleic Acids Res. 1991 Jun 11;19(11):3067–3072. doi: 10.1093/nar/19.11.3067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dolinnaya N. G., Sokolova N. I., Gryaznova O. I., Shabarova Z. A. Site-directed modification of DNA duplexes by chemical ligation. Nucleic Acids Res. 1988 May 11;16(9):3721–3738. doi: 10.1093/nar/16.9.3721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edwards J. L., Taylor R. B. Salicylate intoxication in family practice. Postgrad Med. 1980 Apr;67(4):183-7, 190. doi: 10.1080/00325481.1980.11715433. [DOI] [PubMed] [Google Scholar]
  11. Goodchild J. Conjugates of oligonucleotides and modified oligonucleotides: a review of their synthesis and properties. Bioconjug Chem. 1990 May-Jun;1(3):165–187. doi: 10.1021/bc00003a001. [DOI] [PubMed] [Google Scholar]
  12. Hatahet Z., Purmal A. A., Wallace S. S. A novel method for site specific introduction of single model oxidative DNA lesions into oligodeoxyribonucleotides. Nucleic Acids Res. 1993 Apr 11;21(7):1563–1568. doi: 10.1093/nar/21.7.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ide H., Wallace S. S. Dihydrothymidine and thymidine glycol triphosphates as substrates for DNA polymerases: differential recognition of thymine C5-C6 bond saturation and sequence specificity of incorporation. Nucleic Acids Res. 1988 Dec 9;16(23):11339–11354. doi: 10.1093/nar/16.23.11339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iwai S., Maeda M., Shirai M., Shimada Y., Osafune T., Murata T., Ohtsuka E. Reaction mechanism of T4 endonuclease V determined by analysis using modified oligonucleotide duplexes. Biochemistry. 1995 Apr 11;34(14):4601–4609. doi: 10.1021/bi00014a013. [DOI] [PubMed] [Google Scholar]
  15. Jiang N., Taylor J. S. In vivo evidence that UV-induced C-->T mutations at dipyrimidine sites could result from the replicative bypass of cis-syn cyclobutane dimers or their deamination products. Biochemistry. 1993 Jan 19;32(2):472–481. doi: 10.1021/bi00053a011. [DOI] [PubMed] [Google Scholar]
  16. Kanaya E., Yanagawa H. Template-directed polymerization of oligoadenylates using cyanogen bromide. Biochemistry. 1986 Nov 18;25(23):7423–7430. doi: 10.1021/bi00371a026. [DOI] [PubMed] [Google Scholar]
  17. Kodadek T., Gamper H. Efficient synthesis of a supercoiled M13 DNA molecule containing a site specifically placed psoralen adduct and its use as a substrate for DNA replication. Biochemistry. 1988 May 3;27(9):3210–3215. doi: 10.1021/bi00409a013. [DOI] [PubMed] [Google Scholar]
  18. Latham J. A., Johnson R., Toole J. J. The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-pentynyl)-2'-deoxyuridine. Nucleic Acids Res. 1994 Jul 25;22(14):2817–2822. doi: 10.1093/nar/22.14.2817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Latham K. A., Lloyd R. S. Delta-elimination by T4 endonuclease V at a thymine dimer site requires a secondary binding event and amino acid Glu-23. Biochemistry. 1995 Jul 11;34(27):8796–8803. doi: 10.1021/bi00027a031. [DOI] [PubMed] [Google Scholar]
  20. Lee B. J., Sakashita H., Ohkubo T., Ikehara M., Doi T., Morikawa K., Kyogoku Y., Osafune T., Iwai S., Ohtsuka E. Nuclear magnetic resonance study of the interaction of T4 endonuclease V with DNA. Biochemistry. 1994 Jan 11;33(1):57–64. doi: 10.1021/bi00167a008. [DOI] [PubMed] [Google Scholar]
  21. Murata T., Iwai S., Ohtsuka E. Synthesis and characterization of a substrate for T4 endonuclease V containing a phosphorodithioate linkage at the thymine dimer site. Nucleic Acids Res. 1990 Dec 25;18(24):7279–7286. doi: 10.1093/nar/18.24.7279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Needham-VanDevanter D. R., Hurley L. H. Construction and characterization of a site-directed CC-1065-N3-adenine adduct within a 117 base pair DNA restriction fragment. Biochemistry. 1986 Dec 30;25(26):8430–8436. doi: 10.1021/bi00374a016. [DOI] [PubMed] [Google Scholar]
  23. Preston B. D., Singer B., Loeb L. A. Mutagenic potential of O4-methylthymine in vivo determined by an enzymatic approach to site-specific mutagenesis. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8501–8505. doi: 10.1073/pnas.83.22.8501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shortle D., DiMaio D., Nathans D. Directed mutagenesis. Annu Rev Genet. 1981;15:265–294. doi: 10.1146/annurev.ge.15.120181.001405. [DOI] [PubMed] [Google Scholar]
  25. Smith C. A., Taylor J. S. Preparation and characterization of a set of deoxyoligonucleotide 49-mers containing site-specific cis-syn, trans-syn-I, (6-4), and Dewar photoproducts of thymidylyl(3'-->5')-thymidine. J Biol Chem. 1993 May 25;268(15):11143–11151. [PubMed] [Google Scholar]
  26. Smith M. In vitro mutagenesis. Annu Rev Genet. 1985;19:423–462. doi: 10.1146/annurev.ge.19.120185.002231. [DOI] [PubMed] [Google Scholar]
  27. Svoboda D. L., Vos J. M. Differential replication of a single, UV-induced lesion in the leading or lagging strand by a human cell extract: fork uncoupling or gap formation. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):11975–11979. doi: 10.1073/pnas.92.26.11975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Szybalski W., Kim S. C., Hasan N., Podhajska A. J. Class-IIS restriction enzymes--a review. Gene. 1991 Apr;100:13–26. doi: 10.1016/0378-1119(91)90345-c. [DOI] [PubMed] [Google Scholar]
  29. Tabor S., Richardson C. C. Selective inactivation of the exonuclease activity of bacteriophage T7 DNA polymerase by in vitro mutagenesis. J Biol Chem. 1989 Apr 15;264(11):6447–6458. [PubMed] [Google Scholar]
  30. Usman N., Beigelman L., McSwiggen J. A. Hammerhead ribozyme engineering. Curr Opin Struct Biol. 1996 Aug;6(4):527–533. doi: 10.1016/s0959-440x(96)80119-9. [DOI] [PubMed] [Google Scholar]
  31. Vassylyev D. G., Kashiwagi T., Mikami Y., Ariyoshi M., Iwai S., Ohtsuka E., Morikawa K. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell. 1995 Dec 1;83(5):773–782. doi: 10.1016/0092-8674(95)90190-6. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES