Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1996 Dec;104(Suppl 6):1235–1237. doi: 10.1289/ehp.961041235

The use of protein adducts to investigate the disposition of reactive metabolites of benzene.

S M Rappaport 1, T A McDonald 1, K Yeowell-O'Connell 1
PMCID: PMC1469719  PMID: 9118898

Abstract

Benzene is metabolized to a number of electrophilic species that are capable of binding to both DNA and proteins. We used adducts of hemoglobin (Hb) and bone marrow proteins to study the disposition of three benzene and metabolites (benzene oxide [BO], 1,2-benzoquinone [1,2-BQ], and 1,4-benzoquinone [1,4-BQ]) in F344 rats and B6C3F1 mice following a single oral dosage of [13C6]benzene and/or [14C]benzene. Our assays focused upon cysteine adducts that accounted for 38 to 45% of protein binding to Hb and 63 to 81% of protein binding to bone marrow. Although both mice and rats showed dose-related increases in Hb and bone marrow protein adducts of BO and of the two benzoquinones, large intertissue and interspecies differences were noted, suggesting different preferences in metabolic pathways. The highest levels of adducts in mice were of 1,4-BQ (10-27% of all cysteine adducts), while in rats, BO adducts predominated in Hb (73% of all cysteine adducts) and 1,2-BQ adducts predominated in the bone marrow (14% of all cysteine adducts). High background levels of 1,2-BQ and 1,4-BQ adducts were also detected in both species, indicating that the toxic effects of quinone metabolites may only be important at high levels of benzene exposure.

Full text

PDF
1235

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bechtold W. E., Sun J. D., Birnbaum L. S., Yin S. N., Li G. L., Kasicki S., Lucier G., Henderson R. F. S-phenylcysteine formation in hemoglobin as a biological exposure index to benzene. Arch Toxicol. 1992;66(5):303–309. doi: 10.1007/BF01973623. [DOI] [PubMed] [Google Scholar]
  2. Bechtold W. E., Willis J. K., Sun J. D., Griffith W. C., Reddy T. V. Biological markers of exposure to benzene: S-phenylcysteine in albumin. Carcinogenesis. 1992 Jul;13(7):1217–1220. doi: 10.1093/carcin/13.7.1217. [DOI] [PubMed] [Google Scholar]
  3. Carmella S. G., La Voie E. J., Hecht S. S. Quantitative analysis of catechol and 4-methylcatechol in human urine. Food Chem Toxicol. 1982 Oct;20(5):587–590. doi: 10.1016/s0278-6915(82)80068-9. [DOI] [PubMed] [Google Scholar]
  4. Irons R. D. Quinones as toxic metabolites of benzene. J Toxicol Environ Health. 1985;16(5):673–678. doi: 10.1080/15287398509530777. [DOI] [PubMed] [Google Scholar]
  5. Maga J. A. Simple phenol and phenolic compounds in food flavor. CRC Crit Rev Food Sci Nutr. 1978;10(4):323–372. doi: 10.1080/10408397809527255. [DOI] [PubMed] [Google Scholar]
  6. McDonald T. A., Waidyanatha S., Rappaport S. M. Measurement of adducts of benzoquinone with hemoglobin and albumin. Carcinogenesis. 1993 Sep;14(9):1927–1932. doi: 10.1093/carcin/14.9.1927. [DOI] [PubMed] [Google Scholar]
  7. McDonald T. A., Waidyanatha S., Rappaport S. M. Production of benzoquinone adducts with hemoglobin and bone-marrow proteins following administration of [13C6]benzene to rats. Carcinogenesis. 1993 Sep;14(9):1921–1925. doi: 10.1093/carcin/14.9.1921. [DOI] [PubMed] [Google Scholar]
  8. McDonald T. A., Yeowell-O'Connell K., Rappaport S. M. Comparison of protein adducts of benzene oxide and benzoquinone in the blood and bone marrow of rats and mice exposed to [14C/13C6]benzene. Cancer Res. 1994 Sep 15;54(18):4907–4914. [PubMed] [Google Scholar]
  9. Melikian A. A., Prahalad A. K., Coleman S. Isolation and characterization of two benzene-derived hemoglobin adducts in vivo in rats. Cancer Epidemiol Biomarkers Prev. 1992 May-Jun;1(4):307–313. [PubMed] [Google Scholar]
  10. SATO T., FUKUYAMA T., SUZUKI T., YOSHIKAWA H. 1,2-dihydro-1,2-dihydroxybenzene and several other substances in the metabolism of benzene. J Biochem. 1963 Jan;53:23–27. doi: 10.1093/oxfordjournals.jbchem.a127653. [DOI] [PubMed] [Google Scholar]
  11. Smith M. T. Quinones as mutagens, carcinogens, and anticancer agents: introduction and overview. J Toxicol Environ Health. 1985;16(5):665–672. doi: 10.1080/15287398509530776. [DOI] [PubMed] [Google Scholar]
  12. Smith M. T., Yager J. W., Steinmetz K. L., Eastmond D. A. Peroxidase-dependent metabolism of benzene's phenolic metabolites and its potential role in benzene toxicity and carcinogenicity. Environ Health Perspect. 1989 Jul;82:23–29. doi: 10.1289/ehp.898223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Snyder R., Witz G., Goldstein B. D. The toxicology of benzene. Environ Health Perspect. 1993 Apr;100:293–306. doi: 10.1289/ehp.93100293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Subrahmanyam V. V., Ross D., Eastmond D. A., Smith M. T. Potential role of free radicals in benzene-induced myelotoxicity and leukemia. Free Radic Biol Med. 1991;11(5):495–515. doi: 10.1016/0891-5849(91)90063-9. [DOI] [PubMed] [Google Scholar]
  15. Zhang Z., Xiang Q., Glatt H., Platt K. L., Goldstein B. D., Witz G. Studies on pathways of ring opening of benzene in a Fenton system. Free Radic Biol Med. 1995 Mar;18(3):411–419. doi: 10.1016/0891-5849(94)00148-d. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES