Abstract
The role of cell-specific metabolism in benzene toxicity was examined in both murine and human bone marrow. Hemopoietic progenitor cells and stromal cells are important control points for regulation of hemopoiesis. We show that the selective toxicity of hydroquinone at the level of the macrophage in murine bone marrow stroma may be explained by a high peroxidase/nicotanimide adenine dinucleotide phosphate, reduced [NAD(P)H]:quinone oxidoreductase (NQO1) ratio. Peroxidases metabolize hydroquinone to the reactive 1,4-benzoquinone, whereas NQO1 reduces the quinones formed, resulting in detoxification. Peroxidase and NQO1 activity in human stromal cultures vary as a function of time in culture, with peroxidase activity decreasing and NQO1 activity increasing with time. Peroxidase activity and, more specifically, myeloperoxidase, which had previously been considered to be expressed at the promyelocyte level, was detected in murine lineage-negative and human CD34+ progenitor cells. This provides a metabolic mechanism whereby phenolic metabolites of benzene can be bioactivated in progenitor cells, which are considered initial target cells for the development of leukemias. Consequences of a high peroxidase/NQO1 ratio in HL-60 cells were shown to include hydroquinone-induced apoptosis. Hydroquinone can also inhibit proteases known to play a role in induction of apoptosis, suggesting that it may be able to inhibit apoptosis induced by other stimuli. Modulation of apoptosis may lead to aberrant hemopoiesis and neoplastic progression. This enzyme-directed approach has identified target cells of the phenolic metabolites of benzene in bone marrow and provided a metabolic basis for benzene-induced toxicity at the level of the progenitor cell in both murine and human bone marrow.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bainton D. F., Ullyot J. L., Farquhar M. G. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med. 1971 Oct 1;134(4):907–934. doi: 10.1084/jem.134.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bedi A., Pasricha P. J., Akhtar A. J., Barber J. P., Bedi G. C., Giardiello F. M., Zehnbauer B. A., Hamilton S. R., Jones R. J. Inhibition of apoptosis during development of colorectal cancer. Cancer Res. 1995 May 1;55(9):1811–1816. [PubMed] [Google Scholar]
- Bhat R. V., Subrahmanyam V. V., Sadler A., Ross D. Bioactivation of catechol in rat and human bone marrow cells. Toxicol Appl Pharmacol. 1988 Jun 30;94(2):297–304. doi: 10.1016/0041-008x(88)90271-2. [DOI] [PubMed] [Google Scholar]
- Billips L. G., Petitte D., Hostutler R., Tsai P., Landreth K. S. Suppression of bone marrow stromal cell function. Ann N Y Acad Sci. 1991;628:313–322. doi: 10.1111/j.1749-6632.1991.tb17263.x. [DOI] [PubMed] [Google Scholar]
- Carruth L. M., Demczuk S., Mizel S. B. Involvement of a calpain-like protease in the processing of the murine interleukin 1 alpha precursor. J Biol Chem. 1991 Jul 5;266(19):12162–12167. [PubMed] [Google Scholar]
- Chertkov J. L., Lutton J. D., Jiang S., da Silva J. L., Abraham N. G. Hematopoietic effects of benzene inhalation assessed by murine long-term bone marrow culture. J Lab Clin Med. 1992 Apr;119(4):412–419. [PubMed] [Google Scholar]
- DEGOWIN R. L. BENZENE EXPOSURE AND APLASTIC ANEMIA FOLLOWED BY LEUKEMIA 15 YEARS LATER. JAMA. 1963 Sep 7;185:748–751. doi: 10.1001/jama.1963.03060100028011. [DOI] [PubMed] [Google Scholar]
- Dorshkind K. Regulation of hemopoiesis by bone marrow stromal cells and their products. Annu Rev Immunol. 1990;8:111–137. doi: 10.1146/annurev.iy.08.040190.000551. [DOI] [PubMed] [Google Scholar]
- Fairbairn L. J., Cowling G. J., Dexter T. M., Rafferty J. A., Margison G. P., Reipert B. bcl-2 delay of alkylating agent-induced apoptotic death in a murine hemopoietic stem cell line. Mol Carcinog. 1994 Sep;11(1):49–55. doi: 10.1002/mc.2940110109. [DOI] [PubMed] [Google Scholar]
- Fairbairn L. J., Cowling G. J., Reipert B. M., Dexter T. M. Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell. 1993 Sep 10;74(5):823–832. doi: 10.1016/0092-8674(93)90462-y. [DOI] [PubMed] [Google Scholar]
- Gaido K. W., Wierda D. Modulation of stromal cell function in DBA/2J and B6C3F1 mice exposed to benzene or phenol. Toxicol Appl Pharmacol. 1985 Dec;81(3 Pt 1):469–475. doi: 10.1016/0041-008x(85)90418-1. [DOI] [PubMed] [Google Scholar]
- Gaido K. W., Wierda D. Suppression of bone marrow stromal cell function by benzene and hydroquinone is ameliorated by indomethacin. Toxicol Appl Pharmacol. 1987 Jul;89(3):378–390. doi: 10.1016/0041-008x(87)90157-8. [DOI] [PubMed] [Google Scholar]
- Gaido K., Wierda D. In vitro effects of benzene metabolites on mouse bone marrow stromal cells. Toxicol Appl Pharmacol. 1984 Oct;76(1):45–55. doi: 10.1016/0041-008x(84)90027-9. [DOI] [PubMed] [Google Scholar]
- Ganousis L. G., Goon D., Zyglewska T., Wu K. K., Ross D. Cell-specific metabolism in mouse bone marrow stroma: studies of activation and detoxification of benzene metabolites. Mol Pharmacol. 1992 Dec;42(6):1118–1125. [PubMed] [Google Scholar]
- Goldstein B. D. Benzene toxicity: a critical evaluation: hematotoxicity in humans. J Toxicol Environ Health Suppl. 1977;2:69–105. [PubMed] [Google Scholar]
- Greaves M. F. Stem cell origins of leukaemia and curability. Br J Cancer. 1993 Mar;67(3):413–423. doi: 10.1038/bjc.1993.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruber J., Greil R. Apoptosis and therapy of malignant diseases of the hematopoietic system. Int Arch Allergy Immunol. 1994 Dec;105(4):368–373. doi: 10.1159/000236785. [DOI] [PubMed] [Google Scholar]
- King A. G., Landreth K. S., Wierda D. Bone marrow stromal cell regulation of B-lymphopoiesis. II. Mechanisms of hydroquinone inhibition of pre-B cell maturation. J Pharmacol Exp Ther. 1989 Aug;250(2):582–590. [PubMed] [Google Scholar]
- Kobayashi Y., Yamamoto K., Saido T., Kawasaki H., Oppenheim J. J., Matsushima K. Identification of calcium-activated neutral protease as a processing enzyme of human interleukin 1 alpha. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5548–5552. doi: 10.1073/pnas.87.14.5548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kojima S., Matsuyama T., Kodera Y. Hematopoietic growth factors released by marrow stromal cells from patients with aplastic anemia. Blood. 1992 May 1;79(9):2256–2261. [PubMed] [Google Scholar]
- Koury M. J. Programmed cell death (apoptosis) in hematopoiesis. Exp Hematol. 1992 May;20(4):391–394. [PubMed] [Google Scholar]
- Lichtman M. A. The ultrastructure of the hemopoietic environment of the marrow: a review. Exp Hematol. 1981 Apr;9(4):391–410. [PubMed] [Google Scholar]
- Miller A. C., Schattenberg D. G., Malkinson A. M., Ross D. Decreased content of the IL1 alpha processing enzyme calpain in murine bone marrow-derived macrophages after treatment with the benzene metabolite hydroquinone. Toxicol Lett. 1994 Nov;74(2):177–184. doi: 10.1016/0378-4274(94)90096-5. [DOI] [PubMed] [Google Scholar]
- O'Dowd J. J. The metabolism in vitro of 7,12-dimethylbenz[a]-anthracene by human bone marrow. Cancer Lett. 1987 Jul;36(1):83–92. doi: 10.1016/0304-3835(87)90105-4. [DOI] [PubMed] [Google Scholar]
- Raza A., Mundle S., Iftikhar A., Gregory S., Marcus B., Khan Z., Alvi S., Shetty V., Dameron S., Wright V. Simultaneous assessment of cell kinetics and programmed cell death in bone marrow biopsies of myelodysplastics reveals extensive apoptosis as the probable basis for ineffective hematopoiesis. Am J Hematol. 1995 Mar;48(3):143–154. doi: 10.1002/ajh.2830480302. [DOI] [PubMed] [Google Scholar]
- Renz J. F., Kalf G. F. Role for interleukin-1 (IL-1) in benzene-induced hematotoxicity: inhibition of conversion of pre-IL-1 alpha to mature cytokine in murine macrophages by hydroquinone and prevention of benzene-induced hematotoxicity in mice by IL-1 alpha. Blood. 1991 Aug 15;78(4):938–944. [PubMed] [Google Scholar]
- Rickert D. E., Baker T. S., Bus J. S., Barrow C. S., Irons R. D. Benzene disposition in the rat after exposure by inhalation. Toxicol Appl Pharmacol. 1979 Jul;49(3):417–423. doi: 10.1016/0041-008x(79)90441-1. [DOI] [PubMed] [Google Scholar]
- Ross D., Beall H., Traver R. D., Siegel D., Phillips R. M., Gibson N. W. Bioactivation of quinones by DT-diaphorase, molecular, biochemical, and chemical studies. Oncol Res. 1994;6(10-11):493–500. [PubMed] [Google Scholar]
- Ross D., Siegel D., Gibson N. W., Pacheco D., Thomas D. J., Reasor M., Wierda D. Activation and deactivation of quinones catalyzed by DT-diaphorase. Evidence for bioreductive activation of diaziquone (AZQ) in human tumor cells and detoxification of benzene metabolites in bone marrow stroma. Free Radic Res Commun. 1990;8(4-6):373–381. doi: 10.3109/10715769009053371. [DOI] [PubMed] [Google Scholar]
- Sadler A., Subrahmanyam V. V., Ross D. Oxidation of catechol by horseradish peroxidase and human leukocyte peroxidase: reactions of o-benzoquinone and o-benzosemiquinone. Toxicol Appl Pharmacol. 1988 Mar 30;93(1):62–71. doi: 10.1016/0041-008x(88)90025-7. [DOI] [PubMed] [Google Scholar]
- Sawahata T., Neal R. A. Horseradish peroxidase-mediated oxidation of phenol. Biochem Biophys Res Commun. 1982 Dec 15;109(3):988–994. doi: 10.1016/0006-291x(82)92037-x. [DOI] [PubMed] [Google Scholar]
- Schattenberg D. G., Stillman W. S., Gruntmeir J. J., Helm K. M., Irons R. D., Ross D. Peroxidase activity in murine and human hematopoietic progenitor cells: potential relevance to benzene-induced toxicity. Mol Pharmacol. 1994 Aug;46(2):346–351. [PubMed] [Google Scholar]
- Selkirk J. K., Croy R. G., Whitlock J. P., Jr, Gelboin H. V. In vitro metabolism of benzo(a)pyrene by human liver microsomes and lymphocytes. Cancer Res. 1975 Dec;35(12):3651–3655. [PubMed] [Google Scholar]
- Siegel D., Gibson N. W., Preusch P. C., Ross D. Metabolism of mitomycin C by DT-diaphorase: role in mitomycin C-induced DNA damage and cytotoxicity in human colon carcinoma cells. Cancer Res. 1990 Dec 1;50(23):7483–7489. [PubMed] [Google Scholar]
- Smart R. C., Zannoni V. G. DT-diaphorase and peroxidase influence the covalent binding of the metabolites of phenol, the major metabolite of benzene. Mol Pharmacol. 1984 Jul;26(1):105–111. [PubMed] [Google Scholar]
- Smith M. T., Robertson M. L., Yager J. W., Eastmond D. A. Role of metabolism in benzene-induced myelotoxicity and leukemogenesis. Prog Clin Biol Res. 1990;340B:125–136. [PubMed] [Google Scholar]
- Smith M. T., Yager J. W., Steinmetz K. L., Eastmond D. A. Peroxidase-dependent metabolism of benzene's phenolic metabolites and its potential role in benzene toxicity and carcinogenicity. Environ Health Perspect. 1989 Jul;82:23–29. doi: 10.1289/ehp.898223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snyder R. The benzene problem in historical perspective. Fundam Appl Toxicol. 1984 Oct;4(5):692–699. doi: 10.1016/0272-0590(84)90090-3. [DOI] [PubMed] [Google Scholar]
- Snyder R., Witz G., Goldstein B. D. The toxicology of benzene. Environ Health Perspect. 1993 Apr;100:293–306. doi: 10.1289/ehp.93100293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Squìer M. K., Miller A. C., Malkinson A. M., Cohen J. J. Calpain activation in apoptosis. J Cell Physiol. 1994 May;159(2):229–237. doi: 10.1002/jcp.1041590206. [DOI] [PubMed] [Google Scholar]
- Strobl H., Takimoto M., Majdic O., Fritsch G., Scheinecker C., Höcker P., Knapp W. Myeloperoxidase expression in CD34+ normal human hematopoietic cells. Blood. 1993 Oct 1;82(7):2069–2078. [PubMed] [Google Scholar]
- Subrahmanyam V. V., Ross D., Eastmond D. A., Smith M. T. Potential role of free radicals in benzene-induced myelotoxicity and leukemia. Free Radic Biol Med. 1991;11(5):495–515. doi: 10.1016/0891-5849(91)90063-9. [DOI] [PubMed] [Google Scholar]
- Sun X. M., Snowden R. T., Skilleter D. N., Dinsdale D., Ormerod M. G., Cohen G. M. A flow-cytometric method for the separation and quantitation of normal and apoptotic thymocytes. Anal Biochem. 1992 Aug 1;204(2):351–356. doi: 10.1016/0003-2697(92)90251-2. [DOI] [PubMed] [Google Scholar]
- Sutherland H. J., Lansdorp P. M., Henkelman D. H., Eaves A. C., Eaves C. J. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci U S A. 1990 May;87(9):3584–3588. doi: 10.1073/pnas.87.9.3584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas D. J., Reasor M. J., Wierda D. Macrophage regulation of myelopoiesis is altered by exposure to the benzene metabolite hydroquinone. Toxicol Appl Pharmacol. 1989 Mar 1;97(3):440–453. doi: 10.1016/0041-008x(89)90249-4. [DOI] [PubMed] [Google Scholar]
- Thomas D. J., Sadler A., Subrahmanyam V. V., Siegel D., Reasor M. J., Wierda D., Ross D. Bone marrow stromal cell bioactivation and detoxification of the benzene metabolite hydroquinone: comparison of macrophages and fibroblastoid cells. Mol Pharmacol. 1990 Feb;37(2):255–262. [PubMed] [Google Scholar]
- Twerdok L. E., Rembish S. J., Trush M. A. Induction of quinone reductase and glutathione in bone marrow cells by 1,2-dithiole-3-thione: effect on hydroquinone-induced cytotoxicity. Toxicol Appl Pharmacol. 1992 Feb;112(2):273–281. doi: 10.1016/0041-008x(92)90197-z. [DOI] [PubMed] [Google Scholar]
- Wallace L. A. Major sources of benzene exposure. Environ Health Perspect. 1989 Jul;82:165–169. doi: 10.1289/ehp.8982165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams G. T. Programmed cell death: apoptosis and oncogenesis. Cell. 1991 Jun 28;65(7):1097–1098. doi: 10.1016/0092-8674(91)90002-g. [DOI] [PubMed] [Google Scholar]
- Wolfe J. T., Ross D., Cohen G. M. A role for metals and free radicals in the induction of apoptosis in thymocytes. FEBS Lett. 1994 Sep 19;352(1):58–62. doi: 10.1016/0014-5793(94)00920-1. [DOI] [PubMed] [Google Scholar]
