Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1996 Dec;104(Suppl 6):1257–1264. doi: 10.1289/ehp.961041257

Induction of granulocytic differentiation in a mouse model by benzene and hydroquinone.

B A Hazel 1, A O'Connor 1, R Niculescu 1, G F Kalf 1
PMCID: PMC1469738  PMID: 9118902

Abstract

Chronic exposure of humans to benzene causes acute myelogenous leukemia (AML). The studies presented here were undertaken to determine whether benzene, or its reactive metabolite, hydroquinone (HQ), affects differentiation of myeloblasts. Benzene or HQ administered to C57BL/6J mice specifically induced granulocytic differentiation of myeloblasts. The ability of these compounds to induce differentiation of the myeloblasts was tested directly using the murine interleukin 3 (IL-3)-dependent 32D.3 (G) myeloblastic cell line, and the human HL-60 promyelocytic leukemia cell line. We have previously shown that benzene treatment of HL-60 myeloblasts activates protein kinase C (PKC) and upregulates the 5-lipoxygenase (LPO) pathway for the production of leukotriene D4 (LTD4), an essential effector or granulocytic differentiation. Differentiation was prevented by sphinganine, a PKC inhibitor, and, as shown here, by LPO inhibitors and LTD4 receptor antagonists. Benzene or HQ also induces differentiation in 32D.3 (G) myeloblasts. Both compounds interact with cellular signaling pathways normally activated by granulocyte colony stimulating factor (G-CSF) and can replace the requirement for G-CSF. While IL-3 induces a growth response in 32D.3 (G) cells, G-CSF has been shown to provide both growth and differentiated signals. Both HQ and LTD4 induce differentiation and synergize with IL-3 for growth; however, neither supports growth in the absence of IL-3. Benzene, like HQ, also provides a differentiation signal for 32D cells; however, it has no effect on their growth. Unlike G-CSF, benzene, or LTD4, each of which stimulates terminal differentiation; HQ blocks differentiation at the myelocyte stage, allowing only a small percentage of progenitors to proceed to mature segmented granulocytes. Benzene- and G-CSF-induced differentiation were prevented by the additional of either LPO inhibitors or LTD4 receptor antagonists, indicating that benzene, like G-CSF, upregulates LTD4 production. Hydroquinone-induced differentiation was not affected by the LPO inhibitors, but only by the specific receptor antagonists. Thus HQ appears to obviate the requirement for LTD4 by activating the LTD4 receptor directly.

Full text

PDF
1257

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aihara H., Asaoka Y., Yoshida K., Nishizuka Y. Sustained activation of protein kinase C is essential to HL-60 cell differentiation to macrophage. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11062–11066. doi: 10.1073/pnas.88.24.11062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aksoy M. Malignancies due to occupational exposure to benzene. Am J Ind Med. 1985;7(5-6):395–402. doi: 10.1002/ajim.4700070506. [DOI] [PubMed] [Google Scholar]
  3. Arp E. W., Jr, Wolf P. H., Checkoway H. Lymphocytic leukemia and exposures to benzene and other solvents in the rubber industry. J Occup Med. 1983 Aug;25(8):598–602. [PubMed] [Google Scholar]
  4. Collins S. J. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood. 1987 Nov;70(5):1233–1244. [PubMed] [Google Scholar]
  5. Cronkite E. P., Drew R. T., Inoue T., Hirabayashi Y., Bullis J. E. Hematotoxicity and carcinogenicity of inhaled benzene. Environ Health Perspect. 1989 Jul;82:97–108. doi: 10.1289/ehp.898297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Demetri G. D., Griffin J. D. Granulocyte colony-stimulating factor and its receptor. Blood. 1991 Dec 1;78(11):2791–2808. [PubMed] [Google Scholar]
  7. Dempster A. M., Snyder C. A. Short term benzene exposure provides a growth advantage for granulopoietic progenitor cells over erythroid progenitor cells. Arch Toxicol. 1990;64(7):539–544. doi: 10.1007/BF01971832. [DOI] [PubMed] [Google Scholar]
  8. Fleisch J. H., Rinkema L. E., Haisch K. D., McCullough D., Carr F. P., Dillard R. D. Evaluation of LY163443, 1-[2-hydroxy-3-propyl-4-([4- (1H-tetrazol-5-ylmethyl)phenoxy]methyl) phenyl]ethanone, as a pharmacologic antagonist of leukotrienes D4 and E4. Naunyn Schmiedebergs Arch Pharmacol. 1986 May;333(1):70–77. doi: 10.1007/BF00569663. [DOI] [PubMed] [Google Scholar]
  9. Greenberger J. S., Sakakeeny M. A., Humphries R. K., Eaves C. J., Eckner R. J. Demonstration of permanent factor-dependent multipotential (erythroid/neutrophil/basophil) hematopoietic progenitor cell lines. Proc Natl Acad Sci U S A. 1983 May;80(10):2931–2935. doi: 10.1073/pnas.80.10.2931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greenlee W. F., Gross E. A., Irons R. D. Relationship between benzene toxicity and the disposition of 14C-labelled benzene metabolites in the rat. Chem Biol Interact. 1981 Jan;33(2-3):285–299. doi: 10.1016/0009-2797(81)90047-8. [DOI] [PubMed] [Google Scholar]
  11. Hazel B. A., O'Connor A., Niculescu R., Kalf G. F. Benzene and its metabolite, hydroquinone, induce granulocytic differentiation in myeloblasts by interacting with cellular signaling pathways activated by granulocyte colony-stimulating factor. Stem Cells. 1995 May;13(3):295–310. doi: 10.1002/stem.5530130311. [DOI] [PubMed] [Google Scholar]
  12. Irons R. D., Stillman W. S. Cell proliferation and differentiation in chemical leukemogenesis. Stem Cells. 1993 May;11(3):235–242. doi: 10.1002/stem.5530110311. [DOI] [PubMed] [Google Scholar]
  13. Irons R. D., Stillman W. S., Colagiovanni D. B., Henry V. A. Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3691–3695. doi: 10.1073/pnas.89.9.3691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jones T. R., Zamboni R., Belley M., Champion E., Charette L., Ford-Hutchinson A. W., Frenette R., Gauthier J. Y., Leger S., Masson P. Pharmacology of L-660,711 (MK-571): a novel potent and selective leukotriene D4 receptor antagonist. Can J Physiol Pharmacol. 1989 Jan;67(1):17–28. doi: 10.1139/y89-004. [DOI] [PubMed] [Google Scholar]
  15. Kalf G. F., O'Connor A. The effects of benzene and hydroquinone on myeloid differentiation of HL-60 promyelocytic leukemia cells. Leuk Lymphoma. 1993 Nov;11(5-6):331–338. doi: 10.3109/10428199309067923. [DOI] [PubMed] [Google Scholar]
  16. Kalf G. F. Recent advances in the metabolism and toxicity of benzene. Crit Rev Toxicol. 1987;18(2):141–159. doi: 10.3109/10408448709089859. [DOI] [PubMed] [Google Scholar]
  17. Liebermann D. A., Hoffman B. Differentiation primary response genes and proto-oncogenes as positive and negative regulators of terminal hematopoietic cell differentiation. Stem Cells. 1994 Jul;12(4):352–369. doi: 10.1002/stem.5530120402. [DOI] [PubMed] [Google Scholar]
  18. Merrill A. H., Jr, Sereni A. M., Stevens V. L., Hannun Y. A., Bell R. M., Kinkade J. M., Jr Inhibition of phorbol ester-dependent differentiation of human promyelocytic leukemic (HL-60) cells by sphinganine and other long-chain bases. J Biol Chem. 1986 Sep 25;261(27):12610–12615. [PubMed] [Google Scholar]
  19. Metcalf D. Multi-CSF-dependent colony formation by cells of a murine hemopoietic cell line: specificity and action of multi-CSF. Blood. 1985 Feb;65(2):357–362. [PubMed] [Google Scholar]
  20. Miller A. M., Cullen M. K., Kobb S. M., Weiner R. S. Effects of lipoxygenase and glutathione pathway inhibitors on leukemic cell line growth. J Lab Clin Med. 1989 Mar;113(3):355–361. [PubMed] [Google Scholar]
  21. Miller A. M., Kobb S. M., McTiernan R. Regulation of HL-60 differentiation by lipoxygenase pathway metabolites in vitro. Cancer Res. 1990 Nov 15;50(22):7257–7260. [PubMed] [Google Scholar]
  22. Niculescu R., Kalf G. F. A morphological analysis of the short-term effects of benzene on the development of the hematological cells in the bone marrow of mice and the effects of interleukin-1 alpha on the process. Arch Toxicol. 1995;69(3):141–148. doi: 10.1007/s002040050150. [DOI] [PubMed] [Google Scholar]
  23. Rickert D. E., Baker T. S., Bus J. S., Barrow C. S., Irons R. D. Benzene disposition in the rat after exposure by inhalation. Toxicol Appl Pharmacol. 1979 Jul;49(3):417–423. doi: 10.1016/0041-008x(79)90441-1. [DOI] [PubMed] [Google Scholar]
  24. Roghani M., Da Silva C., Guvelli D., Castagna M. Benzene and toluene activate protein kinase C. Carcinogenesis. 1987 Aug;8(8):1105–1107. doi: 10.1093/carcin/8.8.1105. [DOI] [PubMed] [Google Scholar]
  25. Sammett D., Lee E. W., Kocsis J. J., Snyder R. Partial hepatectomy reduces both metabolism and toxicity of benzene. J Toxicol Environ Health. 1979 Sep;5(5):785–792. doi: 10.1080/15287397909529789. [DOI] [PubMed] [Google Scholar]
  26. Schlosser M. J., Kalf G. F. Metabolic activation of hydroquinone by macrophage peroxidase. Chem Biol Interact. 1989;72(1-2):191–207. doi: 10.1016/0009-2797(89)90027-6. [DOI] [PubMed] [Google Scholar]
  27. Seidel H. J., Barthel E., Zinser D. The hematopoietic stem cell compartments in mice during and after long-term inhalation of three doses of benzene. Exp Hematol. 1989 Mar;17(3):300–303. [PubMed] [Google Scholar]
  28. Smart R. C., Zannoni V. G. DT-diaphorase and peroxidase influence the covalent binding of the metabolites of phenol, the major metabolite of benzene. Mol Pharmacol. 1984 Jul;26(1):105–111. [PubMed] [Google Scholar]
  29. Smith M. T., Yager J. W., Steinmetz K. L., Eastmond D. A. Peroxidase-dependent metabolism of benzene's phenolic metabolites and its potential role in benzene toxicity and carcinogenicity. Environ Health Perspect. 1989 Jul;82:23–29. doi: 10.1289/ehp.898223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Snyder D. S., Desforges J. F. Lipoxygenase metabolites of arachidonic acid modulate hematopoiesis. Blood. 1986 Jun;67(6):1675–1679. [PubMed] [Google Scholar]
  31. Snyder R., Kalf G. F. A perspective on benzene leukemogenesis. Crit Rev Toxicol. 1994;24(3):177–209. doi: 10.3109/10408449409021605. [DOI] [PubMed] [Google Scholar]
  32. Tanaka Y., Tsuyuki M., Itaya-Hironaka A., Inada Y., Yoshihara K., Kamiya T. Retinoic acid-induced differentiation-specific, C-kinase-dependent phosphorylation of cytosolic 44 and 32 kDa proteins in HL-60 cells. Biochem Biophys Res Commun. 1990 May 16;168(3):1253–1260. doi: 10.1016/0006-291x(90)91163-m. [DOI] [PubMed] [Google Scholar]
  33. Tunek A., Platt K. L., Przybylski M., Oesch F. Multi-step metabolic activation of benzene. Effect of superoxide dismutase on covalent binding to microsomal macromolecules, and identification of glutathione conjugates using high pressure liquid chromatography and field desorption mass spectrometry. Chem Biol Interact. 1980 Dec;33(1):1–17. doi: 10.1016/0009-2797(80)90040-x. [DOI] [PubMed] [Google Scholar]
  34. Valtieri M., Tweardy D. J., Caracciolo D., Johnson K., Mavilio F., Altmann S., Santoli D., Rovera G. Cytokine-dependent granulocytic differentiation. Regulation of proliferative and differentiative responses in a murine progenitor cell line. J Immunol. 1987 Jun 1;138(11):3829–3835. [PubMed] [Google Scholar]
  35. Yoshimoto T., Yokoyama C., Ochi K., Yamamoto S., Maki Y., Ashida Y., Terao S., Shiraishi M. 2,3,5-Trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone (AA861), a selective inhibitor of the 5-lipoxygenase reaction and the biosynthesis of slow-reacting substance of anaphylaxis. Biochim Biophys Acta. 1982 Nov 12;713(2):470–473. [PubMed] [Google Scholar]
  36. Ziboh V. A., Wong T., Wu M. C., Yunis A. A. Modulation of colony stimulating factor-induced murine myeloid colony formation by S-peptido-lipoxygenase products. Cancer Res. 1986 Feb;46(2):600–603. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES