Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1996 Dec;104(Suppl 6):1183–1188. doi: 10.1289/ehp.961041183

Phase II metabolism of benzene.

D Schrenk 1, A Orzechowski 1, L R Schwarz 1, R Snyder 1, B Burchell 1, M Ingelman-Sundberg 1, K W Bock 1
PMCID: PMC1469749  PMID: 9118891

Abstract

The hepatic metabolism of benzene is thought to be a prerequisite for its bony marrow toxicity. However, the complete pattern of benzene metabolites formed in the liver and their role in bone marrow toxicity are not fully understood. Therefore, benzene metabolism was studied in isolated rodent hepatocytes. Rat hepatocytes released benzene-1,2-dihydrodiol, hydroquinone (HQ), catechol (CT), phenol (PH), trans-trans-muconic acid, and a number of phase II metabolites such as PH sulfate and PH glucuronide. Pretreatment of animals with 3-methylcholantrene (3-MC) markedly increased PH glucuronide formation while PH sulfate formation was decreased. Likewise, V79 cells transfected with the 3-MC-inducible rat UGT1.6 cDNA showed a considerable rate of PH and HQ glucuronidation. In addition to inducing glucuronidation of phenols, 3-MC treatment (reported to protect rats from the myelotoxicity of benzene) resulted in a decrease of hepatic CYP2E1. In contrast, pretreatment of rats with the CYP2E1-inducer isopropanol strongly enhanced benzene metabolism and the formation of phenolic metabolites. Mouse hepatocytes formed much higher amounts of HQ than rat hepatocytes and considerable amounts of 1,2,4-trihydroxybenzene (THB) sulfate and HQ sulfate. In conclusion, the protective effect of 3-MC in rats is probably due to a shift from the labile PH sulfate to the more stable PH glucuronide, and to a decrease in hepatic CYP2E1. The higher susceptibility of mice toward benzene may be related to the high rate of formation of the myelotoxic metabolite HQ and the semistable phase II metabolites HQ sulfate and THB sulfate.

Full text

PDF
1183

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews L. S., Lee E. W., Witmer C. M., Kocsis J. J., Snyder R. Effects of toluene on the metabolism, disposition and hemopoietic toxicity of [3H]benzene. Biochem Pharmacol. 1977 Feb 15;26(4):293–300. doi: 10.1016/0006-2952(77)90180-0. [DOI] [PubMed] [Google Scholar]
  2. Bock K. W., Gschaidmeier H., Seidel A., Baird S., Burchell B. Mono- and diglucuronide formation from chrysene and benzo(a)pyrene phenols by 3-methylcholanthrene-inducible phenol UDP-glucuronosyltransferase (UGT1A1). Mol Pharmacol. 1992 Oct;42(4):613–618. [PubMed] [Google Scholar]
  3. Bock K. W., White I. N. UDP-glucuronyltransferase in perfused rat liver and in microsomes: influence of phenobarbital and 3-methylcholanthrene. Eur J Biochem. 1974 Aug 1;46(3):451–459. [PubMed] [Google Scholar]
  4. Divincenzo G. D., Hamilton M. L., Reynolds R. C., Ziegler D. A. Metabolic fate and disposition of [14C]hydroquinone given orally to Sprague-Dawley rats. Toxicology. 1984 Oct;33(1):9–18. doi: 10.1016/0300-483x(84)90012-x. [DOI] [PubMed] [Google Scholar]
  5. Eastmond D. A., Smith M. T., Irons R. D. An interaction of benzene metabolites reproduces the myelotoxicity observed with benzene exposure. Toxicol Appl Pharmacol. 1987 Oct;91(1):85–95. doi: 10.1016/0041-008x(87)90196-7. [DOI] [PubMed] [Google Scholar]
  6. Ebner T., Burchell B. Substrate specificities of two stably expressed human liver UDP-glucuronosyltransferases of the UGT1 gene family. Drug Metab Dispos. 1993 Jan-Feb;21(1):50–55. [PubMed] [Google Scholar]
  7. Gad-el-Karim M. M., Ramanujam V. M., Ahmed A. E., Legator M. S. Benzene myeloclastogenicity: a function of its metabolism. Am J Ind Med. 1985;7(5-6):475–484. doi: 10.1002/ajim.4700070511. [DOI] [PubMed] [Google Scholar]
  8. Gill D. P., Kempen R. R., Nash J. B., Ellis S. Modifications of benzene myelotoxicity and metabolism by phenobarbital, SKF-525A and 3-methylcholanthrene. Life Sci. 1979 Nov 5;25(19):1633–1640. doi: 10.1016/0024-3205(79)90404-1. [DOI] [PubMed] [Google Scholar]
  9. Glatt H., Padykula R., Berchtold G. A., Ludewig G., Platt K. L., Klein J., Oesch F. Multiple activation pathways of benzene leading to products with varying genotoxic characteristics. Environ Health Perspect. 1989 Jul;82:81–89. doi: 10.1289/ehp.898281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greenlee W. F., Irons R. D. Modulation of benzene-induced lymphocytopenia in the rat by 2,4,5,2',4',5'-hexachlorobiphenyl and 3,4,3',4'-tetrachlorobiphenyl. Chem Biol Interact. 1981 Jan;33(2-3):345–360. doi: 10.1016/0009-2797(81)90052-1. [DOI] [PubMed] [Google Scholar]
  11. Guy R. L., Dimitriadis E. A., Hu P. D., Cooper K. R., Snyder R. Interactive inhibition of erythroid 59Fe utilization by benzene metabolites in female mice. Chem Biol Interact. 1990;74(1-2):55–62. doi: 10.1016/0009-2797(90)90058-u. [DOI] [PubMed] [Google Scholar]
  12. Henderson R. F., Sabourin P. J., Bechtold W. E., Griffith W. C., Medinsky M. A., Birnbaum L. S., Lucier G. W. The effect of dose, dose rate, route of administration, and species on tissue and blood levels of benzene metabolites. Environ Health Perspect. 1989 Jul;82:9–17. doi: 10.1289/ehp.89829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huff J. E., Haseman J. K., DeMarini D. M., Eustis S., Maronpot R. R., Peters A. C., Persing R. L., Chrisp C. E., Jacobs A. C. Multiple-site carcinogenicity of benzene in Fischer 344 rats and B6C3F1 mice. Environ Health Perspect. 1989 Jul;82:125–163. doi: 10.1289/ehp.8982125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Irons R. D., Neptun D. A. Effects of the principal hydroxy-metabolites of benzene on microtubule polymerization. Arch Toxicol. 1980 Oct;45(4):297–305. doi: 10.1007/BF00293810. [DOI] [PubMed] [Google Scholar]
  15. Johansson I., Ingelman-Sundberg M. Benzene metabolism by ethanol-, acetone-, and benzene-inducible cytochrome P-450 (IIE1) in rat and rabbit liver microsomes. Cancer Res. 1988 Oct 1;48(19):5387–5390. [PubMed] [Google Scholar]
  16. Koop D. R., Laethem C. L., Schnier G. G. Identification of ethanol-inducible P450 isozyme 3a (P450IIE1) as a benzene and phenol hydroxylase. Toxicol Appl Pharmacol. 1989 Apr;98(2):278–288. doi: 10.1016/0041-008x(89)90233-0. [DOI] [PubMed] [Google Scholar]
  17. Nakajima T., Okuyama S., Yonekura I., Sato A. Effects of ethanol and phenobarbital administration on the metabolism and toxicity of benzene. Chem Biol Interact. 1985 Oct;55(1-2):23–38. doi: 10.1016/s0009-2797(85)80118-6. [DOI] [PubMed] [Google Scholar]
  18. PARKE D. V., WILLIAMS R. T. Studies in detoxication. 54. The metabolism of benzene. (a) The formation of phenylglucuronide and phenylsulphuric acid from [14C]benzene. (b) The metabolism of [14C]phenol. Biochem J. 1953 Sep;55(2):337–340. doi: 10.1042/bj0550337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Porteous J. W., Williams R. T. Studies in detoxication. 20. The metabolism of benzene. II. The isolation of phenol, catechol, quinol and hydroxyquinol from the ethereal sulphate fraction of the urine of rabbits receiving benzene orally. Biochem J. 1949;44(1):56–61. [PMC free article] [PubMed] [Google Scholar]
  20. Post G. B., Snyder R. Effects of enzyme induction on microsomal benzene metabolism. J Toxicol Environ Health. 1983 Apr-Jun;11(4-6):811–825. doi: 10.1080/15287398309530386. [DOI] [PubMed] [Google Scholar]
  21. Sammett D., Lee E. W., Kocsis J. J., Snyder R. Partial hepatectomy reduces both metabolism and toxicity of benzene. J Toxicol Environ Health. 1979 Sep;5(5):785–792. doi: 10.1080/15287397909529789. [DOI] [PubMed] [Google Scholar]
  22. Schattenberg D. G., Stillman W. S., Gruntmeir J. J., Helm K. M., Irons R. D., Ross D. Peroxidase activity in murine and human hematopoietic progenitor cells: potential relevance to benzene-induced toxicity. Mol Pharmacol. 1994 Aug;46(2):346–351. [PubMed] [Google Scholar]
  23. Schrenk D., Bock K. W. Metabolism of benzene in rat hepatocytes. Influence of inducers on phenol glucuronidation. Drug Metab Dispos. 1990 Sep-Oct;18(5):720–725. [PubMed] [Google Scholar]
  24. Schrenk D., Ingelman-Sundberg M., Bock K. W. Influence of P-4502E1 induction on benzene metabolism in rat hepatocytes and on biliary metabolite excretion. Drug Metab Dispos. 1992 Mar-Apr;20(2):137–141. [PubMed] [Google Scholar]
  25. Schwartz C. S., Snyder R., Kalf G. F. The inhibition of mitochondrial DNA replication in vitro by the metabolites of benzene, hydroquinone and p-benzoquinone. Chem Biol Interact. 1985 May;53(3):327–350. doi: 10.1016/s0009-2797(85)80108-3. [DOI] [PubMed] [Google Scholar]
  26. Singh V., Ahmad S., Rao G. S. Prooxidant and antioxidant properties of iron-hydroquinone and iron-1,2,4-benzenetriol complex. Implications for benzene toxicity. Toxicology. 1994 Mar 25;89(1):25–33. doi: 10.1016/0300-483x(94)90130-9. [DOI] [PubMed] [Google Scholar]
  27. Smith M. T., Yager J. W., Steinmetz K. L., Eastmond D. A. Peroxidase-dependent metabolism of benzene's phenolic metabolites and its potential role in benzene toxicity and carcinogenicity. Environ Health Perspect. 1989 Jul;82:23–29. doi: 10.1289/ehp.898223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Snyder R., Witz G., Goldstein B. D. The toxicology of benzene. Environ Health Perspect. 1993 Apr;100:293–306. doi: 10.1289/ehp.93100293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Subrahmanyam V. V., Kolachana P., Smith M. T. Metabolism of hydroquinone by human myeloperoxidase: mechanisms of stimulation by other phenolic compounds. Arch Biochem Biophys. 1991 Apr;286(1):76–84. doi: 10.1016/0003-9861(91)90010-g. [DOI] [PubMed] [Google Scholar]
  30. Tsuruda L. S., Lamé M. W., Jones A. D. Formation of epoxide and quinone protein adducts in B6C3F1 mice treated with naphthalene, sulfate conjugate of 1,4-dihydroxynaphthalene and 1,4-naphthoquinone. Arch Toxicol. 1995;69(6):362–367. doi: 10.1007/s002040050185. [DOI] [PubMed] [Google Scholar]
  31. Tunek A., Platt K. L., Bentley P., Oesch F. Microsomal metabolism of benzene to species irreversibly binding to microsomal protein and effects of modifications of this metabolism. Mol Pharmacol. 1978 Sep;14(5):920–929. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES