Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Oct 1;25(19):3912–3916. doi: 10.1093/nar/25.19.3912

In vitro suppression as a tool for the investigation of translation initiation.

V A Karginov 1, S V Mamaev 1, S M Hecht 1
PMCID: PMC146976  PMID: 9380516

Abstract

An in vitro protein synthesizing system that employs rabbit reticulocyte lysates has been employed for protein production from mRNAs containing nonsense (UAG) codons in the presence of misacylated suppressor tRNAs.The system includes a misacylated Escherichia coli tRNAAlaCUA that functions at least as efficiently as any suppressor tRNA transcript reported to date and which has been shown not to be a substrate for (re)activation by alanyl-tRNA synthetase.Application of the optimized system for preparation of dihydrofolate analogs has also permitted analysis of competing mechanisms that control the sites(s) of translation initiation.

Full Text

The Full Text of this article is available as a PDF (96.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bain J. D., Diala E. S., Glabe C. G., Wacker D. A., Lyttle M. H., Dix T. A., Chamberlin A. R. Site-specific incorporation of nonnatural residues during in vitro protein biosynthesis with semisynthetic aminoacyl-tRNAs. Biochemistry. 1991 Jun 4;30(22):5411–5421. doi: 10.1021/bi00236a013. [DOI] [PubMed] [Google Scholar]
  2. Bain J. D., Switzer C., Chamberlin A. R., Benner S. A. Ribosome-mediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code. Nature. 1992 Apr 9;356(6369):537–539. doi: 10.1038/356537a0. [DOI] [PubMed] [Google Scholar]
  3. Baldini G., Martoglio B., Schachenmann A., Zugliani C., Brunner J. Mischarging Escherichia coli tRNAPhe with L-4'-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenylalanine, a photoactivatable analogue of phenylalanine. Biochemistry. 1988 Oct 4;27(20):7951–7959. doi: 10.1021/bi00420a054. [DOI] [PubMed] [Google Scholar]
  4. Chung H. H., Benson D. R., Schultz P. G. Probing the structure and mechanism of Ras protein with an expanded genetic code. Science. 1993 Feb 5;259(5096):806–809. doi: 10.1126/science.8430333. [DOI] [PubMed] [Google Scholar]
  5. Cornish V. W., Benson D. R., Altenbach C. A., Hideg K., Hubbell W. L., Schultz P. G. Site-specific incorporation of biophysical probes into proteins. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2910–2914. doi: 10.1073/pnas.91.8.2910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ellman J. A., Mendel D., Schultz P. G. Site-specific incorporation of novel backbone structures into proteins. Science. 1992 Jan 10;255(5041):197–200. doi: 10.1126/science.1553546. [DOI] [PubMed] [Google Scholar]
  7. Ellman J., Mendel D., Anthony-Cahill S., Noren C. J., Schultz P. G. Biosynthetic method for introducing unnatural amino acids site-specifically into proteins. Methods Enzymol. 1991;202:301–336. doi: 10.1016/0076-6879(91)02017-4. [DOI] [PubMed] [Google Scholar]
  8. Hecht S. M., Alford B. L., Kuroda Y., Kitano S. "Chemical aminoacylation" of tRNA's. J Biol Chem. 1978 Jul 10;253(13):4517–4520. [PubMed] [Google Scholar]
  9. Heckler T. G., Chang L. H., Zama Y., Naka T., Chorghade M. S., Hecht S. M. T4 RNA ligase mediated preparation of novel "chemically misacylated" tRNAPheS. Biochemistry. 1984 Mar 27;23(7):1468–1473. doi: 10.1021/bi00302a020. [DOI] [PubMed] [Google Scholar]
  10. Heckler T. G., Roesser J. R., Xu C., Chang P. I., Hecht S. M. Ribosomal binding and dipeptide formation by misacylated tRNA(Phe),S. Biochemistry. 1988 Sep 20;27(19):7254–7262. doi: 10.1021/bi00419a012. [DOI] [PubMed] [Google Scholar]
  11. Heckler T. G., Zama Y., Naka T., Hecht S. M. Dipeptide formation with misacylated tRNAPhes. J Biol Chem. 1983 Apr 10;258(7):4492–4495. [PubMed] [Google Scholar]
  12. Hinnebusch A. G. Involvement of an initiation factor and protein phosphorylation in translational control of GCN4 mRNA. Trends Biochem Sci. 1990 Apr;15(4):148–152. doi: 10.1016/0968-0004(90)90215-w. [DOI] [PubMed] [Google Scholar]
  13. Hou Y. M., Schimmel P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature. 1988 May 12;333(6169):140–145. doi: 10.1038/333140a0. [DOI] [PubMed] [Google Scholar]
  14. Janknecht R., de Martynoff G., Lou J., Hipskind R. A., Nordheim A., Stunnenberg H. G. Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8972–8976. doi: 10.1073/pnas.88.20.8972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Judice J. K., Gamble T. R., Murphy E. C., de Vos A. M., Schultz P. G. Probing the mechanism of staphylococcal nuclease with unnatural amino acids: kinetic and structural studies. Science. 1993 Sep 17;261(5128):1578–1581. doi: 10.1126/science.8103944. [DOI] [PubMed] [Google Scholar]
  16. Kozak M. A consideration of alternative models for the initiation of translation in eukaryotes. Crit Rev Biochem Mol Biol. 1992;27(4-5):385–402. doi: 10.3109/10409239209082567. [DOI] [PubMed] [Google Scholar]
  17. Kozak M. Adherence to the first-AUG rule when a second AUG codon follows closely upon the first. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2662–2666. doi: 10.1073/pnas.92.7.2662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kozak M. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol. 1987 Aug 20;196(4):947–950. doi: 10.1016/0022-2836(87)90418-9. [DOI] [PubMed] [Google Scholar]
  21. Kozak M. Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol Cell Biol. 1989 Nov;9(11):5073–5080. doi: 10.1128/mcb.9.11.5073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kozak M. Determinants of translational fidelity and efficiency in vertebrate mRNAs. Biochimie. 1994;76(9):815–821. doi: 10.1016/0300-9084(94)90182-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kozak M. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol Cell Biol. 1987 Oct;7(10):3438–3445. doi: 10.1128/mcb.7.10.3438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  25. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Lesley S. A., Brow M. A., Burgess R. R. Use of in vitro protein synthesis from polymerase chain reaction-generated templates to study interaction of Escherichia coli transcription factors with core RNA polymerase and for epitope mapping of monoclonal antibodies. J Biol Chem. 1991 Feb 5;266(4):2632–2638. [PubMed] [Google Scholar]
  28. Lin F. T., MacDougald O. A., Diehl A. M., Lane M. D. A 30-kDa alternative translation product of the CCAAT/enhancer binding protein alpha message: transcriptional activator lacking antimitotic activity. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9606–9610. doi: 10.1073/pnas.90.20.9606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mendel D., Ellman J. A., Chang Z., Veenstra D. L., Kollman P. A., Schultz P. G. Probing protein stability with unnatural amino acids. Science. 1992 Jun 26;256(5065):1798–1802. doi: 10.1126/science.1615324. [DOI] [PubMed] [Google Scholar]
  30. Muralidhar S., Becerra S. P., Rose J. A. Site-directed mutagenesis of adeno-associated virus type 2 structural protein initiation codons: effects on regulation of synthesis and biological activity. J Virol. 1994 Jan;68(1):170–176. doi: 10.1128/jvi.68.1.170-176.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Noren C. J., Anthony-Cahill S. J., Griffith M. C., Schultz P. G. A general method for site-specific incorporation of unnatural amino acids into proteins. Science. 1989 Apr 14;244(4901):182–188. doi: 10.1126/science.2649980. [DOI] [PubMed] [Google Scholar]
  32. Noren C. J., Anthony-Cahill S. J., Suich D. J., Noren K. A., Griffith M. C., Schultz P. G. In vitro suppression of an amber mutation by a chemically aminoacylated transfer RNA prepared by runoff transcription. Nucleic Acids Res. 1990 Jan 11;18(1):83–88. doi: 10.1093/nar/18.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Payne R. C., Nichols B. P., Hecht S. M. Escherichia coli tryptophan synthase: synthesis of catalytically competent alpha subunit in a cell-free system containing preacylated tRNAs. Biochemistry. 1987 Jun 2;26(11):3197–3205. doi: 10.1021/bi00385a039. [DOI] [PubMed] [Google Scholar]
  34. Pezzuto J. M., Hecht S. M. Amino acid substitutions in protein biosynthesis. Poly(A)-directed polyphenylalanine synthesis. J Biol Chem. 1980 Feb 10;255(3):865–869. [PubMed] [Google Scholar]
  35. Resto E., Iida A., Van Cleve M. D., Hecht S. M. Amplification of protein expression in a cell free system. Nucleic Acids Res. 1992 Nov 25;20(22):5979–5983. doi: 10.1093/nar/20.22.5979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Robertson S. A., Noren C. J., Anthony-Cahill S. J., Griffith M. C., Schultz P. G. The use of 5'-phospho-2 deoxyribocytidylylriboadenosine as a facile route to chemical aminoacylation of tRNA. Nucleic Acids Res. 1989 Dec 11;17(23):9649–9660. doi: 10.1093/nar/17.23.9649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Roesser J. R., Chorghade M. S., Hecht S. M. Ribosome-catalyzed formation of an abnormal peptide analogue. Biochemistry. 1986 Oct 21;25(21):6361–6365. doi: 10.1021/bi00369a003. [DOI] [PubMed] [Google Scholar]
  38. Roesser J. R., Xu C., Payne R. C., Surratt C. K., Hecht S. M. Preparation of misacylated aminoacyl-tRNA(Phe)'s useful as probes of the ribosomal acceptor site. Biochemistry. 1989 Jun 13;28(12):5185–5195. doi: 10.1021/bi00438a041. [DOI] [PubMed] [Google Scholar]
  39. Sampson J. R., Uhlenbeck O. C. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1033–1037. doi: 10.1073/pnas.85.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES